ارزیابی مدل‌های شبکه‌بیزین و ماشین‌بردارپشتیبان در برآورد تبخیروتعرق مرجع (مطالعه ‏موردی: خرم‌آباد)‏

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناس ارشد مهندسی آبیاری و زهکشی ، دانشکده کشیاورزی، دانشگاه لرستان

2 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

4 گروه مهندشی آب، دانشکده کشاورزی، دانشگاه لرستان، خرم آباد، ایران

چکیده

در سراسر دنیا مدل فائوپنمن‌مانتیث به‌عنوان یک روش مرجع، برای برآورد تبخیروتعرق‌مرجع مورداستفاده قرارمی‌گیرد. در این روش ‏اطلاعات ورودی زیادی نیاز است که در خیلی از موارد دسترسی به این داده‌ها مشکل می‌باشد، لذا جایگزینی مدل‌های ساده‌تر با ورودی-‏های اولیه کم و دقت مناسب ضرورت می‌یابد. ازاینرو هدف از این پژوهش بررسی دقت و قابلیت مدل‌های ماشین‌بردارپشتیبان و ‏شبکه‌بیزین در برآورد تبخیروتعرق‌مرجع و مقایسه با مدل فائوپنمن‌مانتیث می‌باشد. برای اطلاعات ورودی از اطلاعات ماهانه ایستگاه ‏سینوپتیک خرم‌آباد شامل: بیشینه و کمینه‌درجه‎‌‎حرارت، بیشینه و کمینه‏رطوبت‎‌‎نسبی، تابش‌خورشیدی و سرعت‌باد در بازه زمانی 1395-‏‏1361 (به تعداد 420 ماه) استفاده شد. بر اساس تأثیر پارامترهای ورودی بر خروجی، شش الگوی ورودی برای مدل‌سازی تعیین‌گردید. 70 ‏درصد داده‌ها جهت آموزش و 30 درصد داده‌ها جهت صحت‌سنجی مدل‌ها به‌کارگرفته‌شد. نتایج نشان داد الگوی 5 شامل: ‏حداکثردرجه‌حرارت، سرعت‌باد، تابش‌خورشیدی، حداقل‌درجه‌حرارت و حداقل‌رطوبت‌نسبی در همه مدل‌ها دقیق‌ترین الگو می‌باشد. این الگو ‏در مرحله آزمون در شبکه بیزین، دارای 97/0‏‎ R2=‎و 93‏‎/‎‏0‏RMSE=‎‏ و در ماشین‌بردارپشتیبان با هسته‌توابع‌پایه‌شعاعی، دارای 8‏‎9‎‏/0‏‎ R2=‎و ‏‏41‏‎/‎‏0‏RMSE=‎‏ بوده‌است. مقایسه عملکرد مدل‌ها نشان از برتری مدل ماشین‌بردارپشتیبان نسبت به مدل دیگر داشت به‌طوریکه دارای ‏AARE‏ به میزان 0525/0 و ‏MR‏ به میزان 005/1 بود.‏

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Bayesian Network and Support Vector Machine Models ‎in Estimation of Reference Evapotranspiration (Case Study: ‎Khorramabad)‎

نویسندگان [English]

  • yaser sabzevari 1
  • aliheidar nasrolahi 2
  • Majid Sharifipour 3
  • Babak Shahinejad 4
1 M.Sc.Student, Department of Water Engineering, Faculty of Agriculture and Natural Resources, Lorestan University
2 Associate Professor, Department of Irrigation and Reclamation Engineering, University of Tehran
3 Department of Water Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
4 Department of Water Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
چکیده [English]

Around the world, the Penman-Monteithe-FAO model is used as a reference method to estimate reference ‎evapotranspiration. This method requires a lot of input data, which in many cases are difficult to access, so ‎it is necessary to replace simpler models with low inputs and good accuracy. Therefore, the purpose of this ‎study was to evaluate the accuracy and capability of Bayesian Network and Support Vector Machine ‎models in estimating reference evapotranspiration and comparing it with the Penman-Monteithe-FAO ‎model. For input data, monthly data of Khoramabad synoptic station including: maximum and minimum ‎temperature, maximum and minimum relative humidity, solar radiation and wind speed in period 1990-‎‎2016 (420 months) were used. Based on the effect of input parameters on output, six input patterns were ‎determined for modeling. 70% of data were used for training and 30% for model validation. The results ‎showed that pattern number 5 includes: maximum Temperature, wind speed, solar radiation, minimum ‎temperature and minimum relative humidity in has the best accuracy all models. This model in test phase, ‎has R2 = 0.97 and RMSE = 0.93 in the Bayesian network and 8.9 R2 = 0 and RMSE = 0.41 in support ‎Vector Machine with radial basis functions kernel. Comparison of the performance of the models showed ‎the superiority of the vector machine model over the other models with AARE of 0.0525 and MR of 0.005.‎

کلیدواژه‌ها [English]

  • Bayesian Network
  • ‎ Khorramabad
  • Reference Evapotranspiration
  • Regression
  • Support Vector Machine
احمدی، ف.، آیشم، س.، خلیلی، ک. و بهمنش، ج. 1395. کاربرد سیستم استنتاج فازی-عصبی تطبیقی و ماشین بردار پشتیبان برای برآورد تبخیر- تعرق مرجع ماهانه شمال­غرب کشور. نشریه آب و خاک (علوم و صنایع کشاورزی). جلد 30، شماره 1، فروردین-اردیبهشت 1395، 274-260.
عیسی­زاده، م.، شیرزاد، م. و رضایی بنفشه، م. 1396. ارزیابی عملکرد شبکه عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین مقادیر روزانه تبخیر (مطالعه موردی: ایستگاه هواشناسی تبریز و مراغه). پژوهش­های جغرافیای طبیعی، دوره 49، شماره1، بهار 1396، 151-168.
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), p.D05109.
Almorox, J., Quej, V.H. and Martí, P., 2015. Global performance ranking of temperature-based approaches for evapotranspiration estimation considering Köppen climate classes. Journal of Hydrology, 528, pp.514-522.
Basak, D., Pal, S. and Patranabis, D.C., 2007. Support vector regression. Neural Information Processing-Letters and Reviews, 11(10), pp.203-224.
Davies, P.E., 2007. Bayesian Decision Networks for Management of High Conservation Assets (National Water Initiative–Australian Government Water Fund. Report 6/6 Report to the Conservation of Freshwater Ecosystem Values Project, Water Resources Division, Department of Primary Industries and Water).
Guo, X., Sun, X. and Ma, J., 2011. Prediction of daily crop reference evapotranspiration (ET0) values through a least-squares support vector machine model. Hydrology Research, 42(4), pp.268-274.
Hamel, L.H., 2011. Knowledge discovery with support vector machines (Vol. 3). John Wiley & Sons.
Kisi, O. and Alizamir, M., 2018. Modelling reference evapotranspiration using a new wavelet conjunction heuristic method: Wavelet extreme learning machine vs wavelet neural networks. Agricultural and forest meteorology, 263, pp.41-48.
KIŞI, O. and Cimen, M., 2009. Evapotranspiration modelling using support vector machines/Modélisation de l'évapotranspiration à l'aide de ‘support vector machines’. Hydrological sciences journal, 54(5), pp.918-928.
Kuikka, S. and Varis, O., 1997. Uncertainties of climatic change impacts in Finnish watersheds: a Bayesian network analysis of expert knowledge. Boreal Environment Research, 2, pp.109-109.
Legates, D.R. & ‎ McCabe, G.J. 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research 35 (1), 233–241.
‎Lerner, U., Parr, R., Koller, D. & Biswas, B. 2000. Bayesian fault detection and diagnosis in dynamic ‎systems. In Aaai/iaai. 531-537.‎‏‎
‎Liu, G.Q. 2011. Comparison of regression and ARIMA models with neural network models to ‎forecast the daily streamflow of White Clay Creek. PhD thesis. University of Delaware.‎‏‎ 545 pages.‎‎
Martí, P., González-Altozano, P., López-Urrea, R., Mancha, L. A., & Shiri, J. 2015. Modeling reference evapotranspiration with calculated targets. Assessment and implications. Agricultural Water Management, 149, 81-90.
Mehdizadeh, S., Behmanesh, J., & Khalili, K. 2017. Using MARS, SVM, GEP and empirical equations ‎for estimation of monthly mean reference evapotranspiration. Computers and Electronics in Agriculture, ‎‎139, 103-114.‎
Moghaddamnia, A., Ghafari, M., Piri, J. and Han, D., 2009. Evaporation estimation using support vector machines technique. International Journal of Engineering and Applied Sciences, 5(7), pp.415-423.
Pour-Ali Baba, A., Shiri, J., Kisi, O., Fard, A. F., Kim, S., & Amini, R. 2013. Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Hydrology Research, 44(1), 131-146.
‎SadeghiHesar, A., Tabatabaee, H., & Jalali, M. 2012. Monthly rainfall forecasting using Bayesian ‎belief networks. International Research Journal of Applied and Basic Sciences, 3:2226-223130.‎
Shiri, J., Nazemi, A.H., Sadraddini, A.A., Landeras, G., Kisi, O., Fard, A.F. and Marti, P., 2014. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture, 108, pp.230-241.
Sun, H., Yang, Y., Wu, R., Gui, D., Xue, J., Liu, Y. and Yan, D., 2019. Improving Estimation of Cropland Evapotranspiration by the Bayesian Model Averaging Method with Surface Energy Balance Models. Atmosphere, 10(4), p.188.
Vapnik, V. and Vapnik, V., 1998. Statistical learning theory.
Wen, X., Si, J., He, Z., Wu, J., Shao, H. and Yu, H., 2015. Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water resources management, 29(9), pp.3195-3209.
Yassin, M.A., Alazba, A.A. and Mattar, M.A., 2016. Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate. Agricultural Water Management, 163, pp.110-124