تخصیص منابع آب و شبیه‌سازی عملکرد محصولات در شبکه آبیاری و زهکشی تجن با رویکرد تلفیق دو مدل WOFOST و VENSIM

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، مهندسی آب دانشگاه کشاورزی و منابع طبیعی ساری

2 استاد دانشگاه کشاورزی و منابع طبیعی ساری

3 استادیار گروه آمایش سرزمین و برنامه‏ریزی جغرافیایی دانشگاه تربیت مدرس

4 دانشیار مرکز مدیریت منابع آب، دانشگاه مک‏گیل کانادا.

چکیده

بکارگیری استراتژی‏های مدیریت یکپارچه منابع آب و خاک در مدل‏های سیستم پویا مستلزم در نظر گرفتن فرایندهای فیزیکی همراه با بازخوردهای اقتصادی، اجتماعی، کشاورزی و هیدرولوژیکی می‏باشد. از همین‏رو روش مطلوب برای دستیابی به بهترین حالت از هر دو دنیای مدل، تلفیق آنهاست که بتوان تبادل داده‏ها را بین مدل‏های مختلف فراهم ‏آورده و رفتار پیچیده‏ ناشی از برهم‏کنش‏های مختلف را تحت پوشش قرار ‏داد. لذا در این تحقیق به‏منظور تخصیص منابع آب و برآورد عملکرد محصولات شبکه آبیاری و زهکشی تجن، مدل سیستم پویایی VENSIM و مدل رشد گیاهی WOFOST با استفاده از رویکرد کدنویسی توسعه و مدل تلفیقی PySD-PCSE ایجاد شد. بر همین اساس ابتدا مدل‏های VENSIM و WOFOST در بازه زمانی روزانه برای سال 1394 ساخته و کالیبره شد و با توجه به فرامین کدنویسی به زبان پایتون برگردانده شد و مرحله تلفیق دو مدل انجام پذیرفت. نتایج تحقیق حاضر نشان داد که بیلان منابع آب برای تامین مصارف کشاورزی کافی نبوده و از 155 میلیون متر مکعب، تنها تقریبا 81 میلیون متر مکعب آن تامین شده است که باقی به شکل تامین نشده باقی می‏ماند،‌ به‏طوری‏که میزان کمبود سیاه‏ریشه، مرکبات، شالی، جالیز، ذرت دانه‏ای، حبوبات، دانه‏های روغنی و گندم به ترتیب 52، 25، 30، 2، 2/1، 05/0، 1 و 52/1 میلیون مترمکعب برآورد شده است که بر میزان عملکرد محصولات بسیار موثر است. همچنین با توجه به اندک بودن پتانسیل منابع آب موجود در شبکه، عملکرد محاسبه شده برای محصولاتی نظیر ذرت دانه‏ای،‌گندم و دانه‏های روغنی با عملکرد واقعی محصولات تفاوت قابل ملاحظه‏ای دارد. همچنین از آنجایی که پتانسیل منابع آب موجود شبکه آبیاری و زهکشی تجن برای تامین مصارف کشاورزی آن کافی نبوده، تامینی برای جالیز در تمام مناطق و دانه‏های روغنی، گندم، ذرت دانه‏ای و حبوبات نیز در برخی از مناطق، صورت نگرفته است. همچنین به منظور برآورد بهترین تابع عملکرد ضریب تبیین نمودارهای مختلف رسم شده مقایسه و نتایج این مقایسه نشان داد که تمامی این توابع از نوع درجه دوم و منطبق بر رابطه دورنبوس و کاسام می‏باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Water resource allocation and crop performance simulation in Tajan irrigation and drainage network with coupling of WOFOST and VENSIM models

نویسندگان [English]

  • S.Fateme Hashemi 1
  • Ali Shahnazari 2
  • MAhmoud Raeini 2
  • Mohammadreza shahbazbegian 3
  • jan Franklin Adamowski 4
1 P.hD. Student , Water Engineering Department, Sari Agricultural Sciences and Natural Resources University
2 Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University
3 Assistant Professor Geography and Spatial Planning Department at Tarbiat Modares University, Tehran, Iran
4 Associate Professor, Centre for Water Resources Management, McGill University
چکیده [English]

Integrated water and land resource's strategies requires consideration of physical process in bio-physic model parallel to hydrological, agricultural, social and economic feedbacks in dynamics system. Coupling SD-based models of with physically- based models of environment is therefore a promising method for obtaining the best of both worlds to enable data exchange between different models which could cover the complex behavior caused by the various interactions. Therefore, in this study, in order to water resources allocation and performance estimation of Tajan irrigation and drainage scheme, VENSIM dynamics system model and WOFOST crop growth model were developed using scripting approach and PySD-PCSE coupling model. On this basis, the VENSIM and WOFOST models were first applied and calibrated in 2015, and were returned to Python according to coding instructions and the integration of the two models was performed. The results of the present study showed that the water resources balance was insufficient to supply agricultural demand, and from 155 million cubic meters, only approximately 81 million cubic meters were supplied that the deficiencies for fruits, citrus, rice, grain maize, cereal, oilseed and wheat are 52, 25, 30, 2, 1.2, 0.05, 1 and 1.52 MCM, respectively, which greatly impacts on crop yield. Also, according to the poor potential of water resources in the Tajan scheme, the calculated yield for crops such as corn, wheat and oilseeds is significantly different from the actual yield of crops. On the other hand, since the potential water resources of the Tajan irrigation and drainage scheme are insufficient to provide for agricultural demands, no supplies have been made for pulse in all areas and for oilseeds, wheat, corn and beans in some areas. Also, in order to estimate the best yield function of the coefficient of explanation of the different plotted graphs, the results of this comparison showed that all of these functions are of polynomial type and are consistent with the Dornbus-Kasam relation.

کلیدواژه‌ها [English]

  • Yield Function
  • Python scripting
  • feedback
  • dynamic system model
  • crop growth model
خوش‏روش. م. و ولی زاده. م. 1396. اثرات احداث شبکه آبیاری و زهکشی سد مخزنی شهید رجایی روی تغییرات زمانی و مکانی کمیت و کیفیت آب زیرزمینی دشت ساری - نکا. علوم آب و خاک - علوم و فنون کشاورزی و منابع طبیعی. جلد ۲۱، شماره ۲.
جنت‏صادقی. م.، شاه نوشیفروشانی. ن.، دانشورکاخکی. م.، دوراندیش. آ.، محمدی. ح. 1397. بررسی عاملهای مؤثر بر عملکرد محصولهای راهبردی کشاورزی )گندم و جو(در استان خراسان رضوی. اقتصاد کشاورزی/جلد 21 /شماره 1/صفحه های 231 - 111.
زحمتکش. م.، منتظر. ع. ا. 1390. ارزیابی عملکرد تعدادی از شبکه ‌های آبیاری جهان با استفاده از شیوه مقایسه‌ ای و تحلیل داده‌ کاوی. آب و خاک (علوم و صنایع کشاورزی) شماره 5،‌دوره 25. ; از صفحه 1042 تا صفحه 1057.  
قبائی سوق. م.، زارع ابیانه. ح.، مساعدی . 1396. تعیین توابع تولید عملکرد گندم و جو دیم در سطح استان گلستان با استفاده از (ARID)  شاخص مرجع کشاورزی برای خشکسالی. نشریه آبیاری و زهکشی ایران. - شماره 1 ، جلد ، فروردین - اردیبهشت ، ص. 11-21.
Akhtar, M.K., Wibe, J., Simonovic, S.P., MacGee, J. 2013. Integrated assessment model of society-biosphere-climate-economy-energy system. Environ. Model. Softw. 49, 1e21.
Butler, C., Adamowski, J., 2015. Empowering marginalized communities in water resources management: Addressing inequitable practices in Participatory Model Building. J. Environ. Manage. 153, 153–162.
Bulatewicz, T., Allen, A., Peterson, J.M., Staggenborg, S., Welch, S.M., Steward, D.R., 2013. The simple script wrapper for OpenMI: enabling interdisciplinary modeling studies. Environ. Model. Softw. 39, 283–294.
Doorenbos, J. and Kassam, A. H. 1979. "Yield response to Water." irrigation and drainage. Paper No. 33, Food and Agricultural Organization. Rome. Italy.
Houghton, J. 2018. PySD Documentation Release 0.9.0. P: 27.
Horlemann, L., Jafari Berenji P. 2017. Participation in Water Management in Iran. Reviving the Dying Giant pp 51-62.
Hassanzadeh, E. 2016.  Integrated management of water resource systems under changing water availability, policy, and irrigation expansion plans.  A thesis submitted to the college of graduate studies and research in partial fulfillment of the requirements for the degree of doctor of philosophy in the department of civil and geological engineering university of saskatchewan Saskatoon.
Inam, A., Adamowski, J., Halbe, J., Malard, J., Albano, R., Prasher, S., 2017a. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management Part 2: model coupling and application. J. Hydrol. 551, 278e299.
Liao, Y.-P., Lin, S.-S., Chou, H.-S., 2012. Integration of urban runoff and storm sewer models using the OpenMI framework. J. Hydroinformatics 14 (4), 884e901.
Laudien, R., Klose, S., Klose, A., Rademacher, C., Brocks, S., 2008. Implementation of non-java based interfaces to embed existing models in spatial decision support systems – case study : integration of MS_ excel-models in IWEGS -, in: Chen, J., Jiang, J., Kainz, W. (Eds.), Proc. XXXVII, Part B2, Commission II. Beijing, China, pp. 1682–1750.
Madani, K. 2014.Water management in Iran: what is causing the looming crisis? Journal of Environmental Studies and Sciences. Volume 4, Issue 4, pp 315–328.
Malard, J.J., Inam A., Hassanzadeh E., Adamowski J., Tuy H.A., Melgar-Qui~nonez H. 2017. Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models. Environmental Modelling & Software 96 : 410e420.
Peck, A., Neuwirth, C., Simonovic, S.P., 2014. Coupling System Dynamics with Geographic Information Systems: CCaR Project Report. University of Western Ontario Department of Civil and Environmental Engineering, report no. 086. ISBN 1913-3219.
Pahl-Wostl, C., 2007. The implications of complexity for integrated resources management. Environ. Model. Softw. 22, 561e569.
Prodanovic, P., Simonovic, S.P., 2007a. Dynamic Feedback Coupling of Continuous Hydrologic and Socio-Economic Model Components of the Upper Thames River Basin. Department of Civil and Environmental Engineering, The University of Western Ontario, Canada.
Prodanovic, P., Simonovic, S.P., 2007b. Integrated Water Resources Modelling of the Upper Thames River Basin, pp. 1–10.
Prodanovic, P., Simonovic, S.P., 2010. An operational model for support of integrated watershed management. Water Resour. Manag. 24, 1161–1194.
Supit, I., Van Diepen, C.A., De Wit, A.J.W., Kabat, P., Baruth, B., Ludwig, F., 2010. Recent changes in the climatic yield potential of various crops in Europe. Agric. Syst. 103, 683–694.
Shrestha, N.K., Leta, O.T., De Fraine, B., van Griensven, A., Bauwens, W., 2013. OpenMI-based integrated sediment transport modelling of the river Zenne, Belgium. Environ. Model. Softw. 47, 193e206.
Valipour, M., Banihabib, M.E., Behbahani, S.M.R., 2013. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476, 433–441.
Valipour, M., Sefidkouhi, M.A.G., Raeini, M., 2017. Selecting the best model to estimate potential evapotranspiration with respect to climate change and magnitudes of extreme events. Agric. Water Manag. 180, 50–60.
Ventana Systems Inc. 1998. Vensim PLE Software Version 3.0. Ventana Systems, Inc.: 60 Jacob Gates Road, Harvard, Mass.
Wit, A. d. 2018. PCSE Documentation Release 5.4. P: 120.