پیش ‏بینی تغییرات سطح آب زیرزمینی دامنه شمالی سهند با کاربرد روش‌های سامانه استنتاج فازی– عصبی، سری‌های زمانی و رگرسیونی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار پژوهش، بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی آذربایجان شرقی، سازمان تحقیقات، آموزش و ترویج کشاورزی، تبریز، ایران.

2 استادیار، گروه مهندسی معدن، دانشگاه آزاد اسلامی واحد اهر، اهر، ایران

چکیده

برداشت و بهره‏برداری مداوم و بی‌رویه از منابع آب زیرزمینی در دامنه شمالی سهند از سال 1362 موجب افت بیش از 14 متر از سطح آب گردیده است. بنابراین بهره‌برداری بهینه و پایدار از منابع آب زیرزمینی در این آبخوان یک‌ ضرورت مدیریتی است و لازمه آن الگوبندی کمی مصرف، تحلیل روند بهره‌برداری و آینده‏پژوهی وضعیت آن است. این پژوهش با هدف تحلیل و آینده‏پژوهی افت سطح آب زیرزمینی دامنه شمالی سهند در دوره آماری 50 ساله با کاربرد روش‌های سری‌های زمانی، رگرسیونی و سامانه استنتاج فازی– عصبی انجام گردید. برای الگوبندی، آزمون و آینده‏پژوهی افت سطح آب زیرزمینی دامنه شمالی سهند از روش‏های متعدد سری‌های زمانی، دو روش رگرسیونی و سامانه استنتاج فازی– عصبی استفاده گردید. الگوبندی، آزمون و آینده‏پژوهی افت سطح آب زیرزمینی برای 50 سال صورت گرفت که 35 سال (از سال 1362 تا 1397) برای مراحل الگوبندی و آزمون و 15 سال (از 1398 تا 1412) برای آینده‏پژوهی استفاده گردید. نتایج نشان داد دقیق‏ترین روش برای تحلیل و آینده‏پژوهی افت سطح آب زیرزمینی دامنه شمالی سهند، روش سامانه استنتاج فازی – عصبی بود. در طول 35 سال گذشته سطح آب زیرزمینی بیش از 14 متر و به طور میانگین هر سال حدود 40 سانتی‌‌متر افت داشته است. با فرض ادامه یافتن شرایط موجود بهره‏برداری از منابع آب زیرزمینی، میانگین افت تجمعی سطح آب زیرزمینی، در سال 1412 برابر 03/20 متر خواهد بود. برای صیانت از منابع آب زیرزمینی در منطقه، سناریو و شرایط مختلف صرفه‏جویی در مصرف آب پیش‏بینی و پیشنهاد گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Variations of Groundwater Levels for the North of Sahand with Neural-Fuzzy Inference System, Time Series and Regression

نویسندگان [English]

  • Abolfazl Nasseri 1
  • Aynur Nasseri 2
1 Associate Professor, Agricultural Engineering Research Department, East Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
2 Assistant Professor, Department of Mining Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
چکیده [English]

Unsustainable application of groundwater in the north of Sahand (East Azarbaijan, Iran) caused a decline more than 14m in water level from 1983 (1362) by now. Therefore, the optimum and sustainable utilization of this resource is a management necessity which is depending on modeling, trend analysis and future study of its how application. The present study was conducted with the aim of groundwater level analysis in the north of Sahand with time series, regression and neural-fuzzy inference system methods. The modeling, test and future studying were made for 50 years which 35 years (from 1983 to 2018) were applied to model and test; and 15 years (from 2019 to 2033) were applied to future study. Results showed that based on indices of performance evaluations, neural-fuzzy inference system produced more precise than other methods to analyze groundwater levels. The groundwater level declined more than 14m with an annually of 40cm and its will be 20.03m in 2034 with current conditions of applications of groundwater. Some conservational scenarios are recommended to improve consumption patterns for groundwater resource in this plain.

کلیدواژه‌ها [English]

  • Groundwater
  • Future Study
  • Fuzzy logic
  • Neural-fuzzy inference system. Neural network
  • time series
بی‏نام، 1398. بررسی وضعیت منابع آب زیرزمینی کشور تا پایان سال آبی 97-1396. شرکت مدیریت منابع آب ایران، معاونت مطالعات پایه و مدیریت حوضه‌های آبریز، وزارت نیرو. ایران
چیت‌سازان، م. میرزائی، س. ی. و چینی‏پرداز، ر. 1386. منطقه‌بندی آبخوان شهرکرد با استفاده از تحلیل سری‌های زمانی. مجله علوم. دانشگاه شهید چمران اهواز. قسمت ب. 1 - 15.
رحمانی، ع. ر. و سدهی، م. 1383. پیش‌بینی تغییرات سطح آب زیرزمینی دشت همدان- بهار با الگو سری‌های زمانی. مجله آب و فاضلاب. جلد 15 شماره 3 . 42 - 49.
رحیمی، د. و غیور، ح. 1389. تحلیل دبی رودخانه کارون با تبدیل باکس-کاکس وسری‌های زمانی. مجله تحقیقات جغرافیایی، جلد 25، شماره 4 . 135 - 151.
زاهدی، م. و قویدل رحیمی، ی. 1381. شناخت، طبقه‏بندی و پیش‌بینی خشکسالی حوضه آبریز دریاچه ارومیه با استفاده از مدل سری زمانی هالت- وینترز. فضای جغرافیائی.جلد 6. 19- 48.
ناصری، ا. و ناصری، آ. 1398. مصرف بهینه منابع آب زیرزمینی در حاشیه شمالی دریاچه ارومیه. انتشارات آرنا. 64 ص.
نیرومند، ح. 1376. تحلیل سری‌های زمانی، روش‌های یک متغیری و چند متغیری (ترجمه). دانشگاه فردوسی مشهد.
Adhikary, S.K., Rahman, M., Gupta, A.D. 2012. A stochastic modeling technique for predicting groundwater table fluctuations with time series analysis. International Journal of Applied Science and Engineering Research 1(2): 238-249
Ansarifar, M. M., Salarijazi, M., Ghorbani, K., Kaboli, A. R. 2020. Simulation of groundwater level in a coastal aquifer. Marine Georesources & Geotechnology, 38(3), 257-265.
Brockwell, P.J., Davis, R.A. 1996. Introduction to time series and forecasting. Springer-Verlag, New York, Inc. p.449
Chatfield, C. 1996. The analysis of time series: an introduction. CRC press; p.205.
Choubin, B., Malekian, A. 2017. Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions. Environmental Earth Sciences 76(15), p.538.
Chow, V.T., Kareliotis, S.J. 1970. Analysis of stochastic hydrologic systems. Water Resources Research 16: 1569-1582.
Dehghani, A.A., Asgari, M., Mosaedi, A. 2009. Comparison of geostatistics, Artificial neural networka and adaptive neuro-fuzzy inference system approaches in groundwater level interpolation (case study: Ghazvin aquifer). J. Agric. Sci. Natur. 16: 517-536
Gibrilla, A. G., Anornu, G., Adomako, D. 2018. Trend analysis and ARIMA modeling of recent groundwater levels in the White Volta River basin of Ghana. Groundwater for Sustainable Development 6:150-163.
Hatch, C.E., Fisher, A.T., Ruehl, C.R., Stemler, G. 2010. Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. Journal of Hydrology 389(3-4):276-288.
Irvine, D.J., Cranswick, R.H., Simmons, C.T., Shanafield, M.A., Lautz, L.K. 2015. The effect of streambed heterogeneity on groundwater‐surface water exchange fluxes inferred from temperature time series. Water Resources Research 51(1): 198-212.
Jang, J.S.R., Sun, C.T. 1997. Neuro-fuzzy modeling and control, proceeding of the IEEE. 83(3):378-406.
Johnson, T.C., Slater, L.D., Ntarlagiannis, D., Day‐Lewis, F.D., Elwaseif, M. 2012. Monitoring groundwater‐surface water interaction using time‐series and time‐frequency analysis of transient three‐dimensional electrical resistivity changes. Water Resources Research 48(7).
Khashei-Siuki. A., Ghahraman, B., Kouchakzadeh, M. 2013. Comparison of ANN, Anfis and regression models to estimate groundwater level of Neyshaboor aquifer. Iranian Journal of Irrigation and Drainage 1(7):10-22
Kholghi, M., Hosseini, S.M. 2009. Comparison of groundwater level estimation using neuro-fuzzy and ordinary kriging. Journal of Environmental Modeling and Assessment 14(6):729-753.
Krueger, E., Prior, S.A., Kurtener, D., Rogers, H.H., Runion, G.B. 2011. Characterizing root distribution with adaptive neuro-fuzzy analysis. International Agrophysics 25: 93-96.
Lalehzari, R., Boroomand Nasab, S., Moazed, H., Haghighi, A., Yaghoobzadeh, M. 2020. Simulation-optimization modeling for water resources management using NSGAII‐OIP and MODFLOW. Irrigation and Drainage, 69(3), 317-332.
Peterson, R.N., Santos, I.R., Burnett, W.C. 2010. Evaluating groundwater discharge to tidal rivers based on a Rn-222 time-series approach. Estuarine, Coastal and Shelf Science 86(2):165-178.
Rakhshandehroo, G.R., Amiri, S.M. 2012. Evaluating fractal behavior in groundwater level fluctuations time series. Journal of hydrology 464:550-556.
Rau, G.C., Andersen, M.S., Acworth, R.I. 2012. Experimental investigation of the thermal time‐series method for surface water‐groundwater interactions. Water Resources Research 48(3).
Salas, J.D., Delleur, J.W., Yevjevich, V.M., Lane, W.L. 1980. Applied modeling of hydrologic time series. Water Resources publications. Littleton. Colorado, p.484.
Samani, N., Raeissi, E., Soltani, A .1994. Modeling the stochastic behavior of the Fars river. J. Science1994; IRI. 5 (1& 2): 49-58.
Sen, Z. 1998. Small sample estimation of the time average in climate time series. International Journal of Climatology 18; 1725-1732.
Siadat, H. 2000. Iranian agriculture and salinity. Soil and Water Research Institute of Iran, Tehran, Iran, p.103.
Takagi, T., Sugeno, M. .1985. Fuzzy identification of system and its applications to modeling and control IEEE Trans. Syst., Man, Cybern 15(1):116-132.
Taweesin, K., Seeboonruang, U., Saraphirom, P. 2018. The Influence of Climate Variability Effects on Groundwater Time Series in the Lower Central Plains of Thailand. Water 10(3), p.290.
Vandersteen, G., Schneidewind, U., Anibas, C., Schmidt, C., Seuntjens, P., Batelaan, O. 2015. Determining groundwater‐surface water exchange from temperature‐time series: Combining a local polynomial method with a maximum likelihood estimator. Water Resources Research 51(2): 922-939.
Vangeer, F.C. 1996. An estimation of Box Jenkins transfer noise models for spatial interpolation of ground water head series: Journal of Hydrology 192: 65-80.
Yang, Q., Wang, Y., Zhang, J., Delgado, J. 2017. A comparative study of shallow groundwater level simulation with three time series models in a coastal aquifer of South China. Applied Water Science 7(2): 689-698.