تعیین پاسخ هیدرولوژیک حوضه آبریز با استفاده از حل عددی و تحلیلی معادله موج جنبشی بر اساس داده‌های مدل فیزیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد اراک، اراک، ایران

2 گروه مهندسی عمران، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مهندسی عمران، واحد اسلامشهر، دانشگاه آزاد اسلامی، اسلامشهر، ایران

4 گروه مهندسی آب دانشگاه آزاد اراک

چکیده

یکی از مهمترین موضوعات در مطالعات حوضه، پاسخ هیدرولوژیک آن است. تحقیقات متعددی به منظور تعیین پاسخ هیدرولوژیک از جمله مدل موج سینماتیک انجام شده و نتایج حاصل، حاکی از مزایا و معایب این مدل‌ها است. در این تحقیق به بررسی روش عددی و روش تحلیلی حل معادله موج سینماتیک پرداخته شد و نتایج حاصل در یک حوضه آزمایشگاهی مورد ارزیابی قرار گرفت. به منظور بررسی حل عددی موج سینماتیک، از روش تفاضل محدود در بستر نرم افزار HEC-HMS استفاده گردید و برای ارزیابی روش تحلیلی، با استفاده از معادله موج سینماتیک و بهره‌گیری از نرم افزار GIS، به روندیابی جریان در حوضه آزمایشگاهی پرداخته شد. نتایج حاصل از دو روش مذکور، در کنار نتایج حاصل از روش زمان-مساحت در مدل HEC-1 قرار گرفت و در نهایت نتایج این سه روش با نتایج مشاهداتی حاصل از رخدادهای بارش-رواناب موجود در حوضه آزمایشگاهی مقایسه گردید. نتایج نشان داد خطای مدل تحلیلی موج سینماتیک، مدل عددی موج سینماتیک و مدل HEC-1 در تعیین مقدار دبی ماکزیمم، طبق شاخص خطای نسبی، حدود یک درصد بود. همچنین در تعیین هیدروگراف رواناب خروجی حوضه و میزان تطابق نتایج محاسباتی با مقادیر مشاهداتی، طبق شاخص نش-ساتکلیف، مدل تحلیلی موج سینماتیک مقدار 926/0 بهترین عملکرد را داشت و مدل عددی موج سینماتیک با مقدار 838/0 نسبت به دو مدل دیگر ضعیف‌تر عمل نمود. اما طبق شاخص رگرسیون، مدل HEC-1 با مقدار 944/0 بهترین عملکرد، مدل تحلیلی موج سینماتیک با مقدار 932/0 در رتبه دوم و مدل عددی موج سینماتیک با مقدار 899/0 رتبه سوم را به دست آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Extracting hydrological response using numerical and analytical solution of kinematic wave based on physical model data

نویسندگان [English]

  • Mohammad Mohammadi Hashemi 1
  • Bahram Saghafian 2
  • Mahmoud Zakeri Niri 3
  • Mohsen Najarchi 4
1 Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran
2 Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Civil Engineering, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
4 water Science Engineering Islamic Azad University of Arak, Iran
چکیده [English]

Hydrological response is one of the most important issues in watershed studies. Various researches have been performed in order to determine the hydrological response, including the kinematic wave model, and the results indicate the advantages and disadvantages of the models. In this paper, the numerical and analytical methods of solving the kinematic wave equation were investigated and the results were evaluated in a laboratory watershed. So, the finite difference method was used in the framework of HEC-HMS software, and to evaluate the analytical method, by the kinematic wave equation and using GIS software, the flow routing in the laboratory watershed were investigated. The results of the two mentioned methods were placed next to the results of the time-area method in the HEC-1 model, and finally the results of these three methods were compared with the observational results of the rainfall-runoff events in the laboratory watershed. The error of the kinematic wave analytical model, the kinematic wave numerical model and the HEC-1 model in determining the maximum flow rate, according to the relative error index, was about one percent. Also, according to Nash-Sutcliffe index, the kinematic wave analytical model had the best performance with a value of 0.926 and the numerical solution of the kinematic wave with a value of 0.838 was weak compared to the other two models in derivation of the hydrograph. However, the regression index of the HEC-1 model was 0.944 and analytical method with a value of 0.932 ranked second, and the numerical model of the kinematic wave with a value of 0.899 was ranked third.

کلیدواژه‌ها [English]

  • Analytical solution
  • Hydrological response
  • Kinematic wave
  • Numerical solution
  • V-shaped watershed
رضایی انور، م. ذاکری نیری، م. و سهرابی ملایوسفی، م. 1399. روندیابی سیل به روش موج سینماتیک در بستر GIS (مطالعه موردی: رودخانه قره‌چای). نشریه آبیاری و زهکشی ایران. 15 (1): 163-151.
علیزاده، الف. 1400. اصول هیدرولوژی کاربردی. دانشگاه امام رضا (ع). چاپ چهل و پنجم.
نوری، ح. و کرمی، ح. 1397. توسعه عملکرد روش های نوین با استفاده از بهینه سازی چند هدفه در کنترل رواناب شهری. مجله تحقیقات منابع آب ایران. 14(3): 58-45.
Ajward, M. and Muzik, I. 2000. A spatially varied unit hydrograph model. Journal of Environmental Hydrology. 8 (May):1–8.
Chabokpour, J. 2022. Operation of the non-linear Muskingum model in the prediction of the pollution breakthrough curves through the river reaches. Amirkabir Journal of Civil Engineering. Civil engineering department, university of Maragheh. 54 (1): 21-34.
Chaudhry, H. C. 1993. Open-channel hydraulics. NJ: Prentice Hall.
Chow, V. T. 1959. Open channel flow. New York, NY: McGraw-Hill.
Chow, V. T., Maidment, D. R. and Mays, L. W. 1988. Applied hydrology. McGraw Hill.
Clark, C. O. 1945. Storage and the unit hydrograph. Proceedings of the American Society of Civil Engineers. 69 (9): 1419–1446.
Her, Y. and Heatwole, C. 2016. HYSTAR Sediment Model: Distributed Two-Dimensional Simulation of Watershed Erosion and Sediment Transport Using Time-Area Routing. JAWRA Journal of the American Water Resources Association. 52 (2): 376–396.
Islam, A. 2013. Flood routing by kinematic wave model. IOSR Journal of Mechanical and Civil Engineering. 9 (6): 55–60.
Kang, K. and Merwade, V. 2011. Development and application of a storage–release based distributed hydrologic model using GIS. Journal of Hydrology. 403 (1–2): 1–13.
Kirstetter, G., Hu, J., Delestre, O., Darboux, F., Lagrée, P. Y., Popinet, S., Fullana, J. M. and Josserand, Ch. 2016. Modeling rain-driven overland flow: Empirical versus analytical friction terms in the shallow water approximation. Journal of Hydrology. 536: 1-9.
Kokovska, Y. and Venherskyi, P. 2022. Using of FEM for Modeling of Compatible Movement of Surface Kinematic Waves and River Flows. in 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). IEEE. 793–797.
Krutov, A. N. and Shkol’nikov, S. Y. 2021. Kinematic Wave Equations for Movable Riverbeds. Meteorologiya i Gidrologiya. (6). 43–54.
Leclerc, G. and J.C., S. 1973. Methodology for assessing the potential impact of urban development on urban runoff and the relative efficiency of runoff control alternatives. Mass Inst Technol, Dep Civ Eng, Ralph M. Parsons Lab Water Res Hydrody.
Liang, J. 2010. Evaluation of Runoff Response to Moving Rainstorms. A Dissertation submitted to the Faculty of the Graduate School, Marquette University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.
Liang, J. and Melching, C. S. 2012. Comparison of Computed and Experimentally Assessed Times of Concentration for a V-Shaped Laboratory Watershed. Journal of Hydrologic Engineering. 17 (12): 1389–1396.
Liang, J. and Melching, C. S. 2015. Experimental evaluation of the effect of storm movement on peak discharge. International Journal of Sediment Research. 30 (2): 166–177.
Luo, C. 2021. Comparing Five Kinematic Wave Schemes for Open-Channel Routing for Wide-Tooth-Comb-Wave Hydrograph. Journal of Hydrologic Engineering. 26 (4): 1-9.
Maidment, D. R. 1993. Developing a spatially distributed unit hydrograph by using GIS. Proc. of HydroGIS. IAHS Publication, Wallingford, No. 211. 181-192.
Melesse, A. M. and Graham, W. D. 2004. Storm Runoff Prediction Based on a Spatially Distributed Travel Time Method Utilizing Remote Sensing and GIS. Journal of the American Water Resources Association. 40 (4): 863–879.
Melesse, A. M., Graham, W. D. and Jordan, J. D. 2003. Spatially distributed watershed mapping and modeling: GIS-based storm runoff response and hydrograph analysis: part 2’, Journal of Spatial Hydrology. 3 (2): 1–28.
Mohammadi Hashemi, M., Saghafian, B., Zakeri Niri, M. and Najarchi, M. 2022. Applicability of Rainfall–Runoff Models in Two Simplified Watersheds. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 46: 3295–3306.
Sabzevari, T., Ardakanian, R., Shamsaee, A. and Talebi, A. 2009. Estimation of flood hydrograph in no statistical watersheds using HEC-HMS model and GIS (Case study: Kasilian watershed). Journal of Water Engineering. 4: 1–11.
Sabzevari, T., Noroozpour, S. and Pishvaei, M. H. 2015. Effects of geometry on runoff time characteristics and time-area histogram of hillslopes. Journal of Hydrology. 531: 638–648.
Saghafian, B. and Julien, P. Y. 1995. Time to equilibrium for spatially variable watersheds. Journal of Hydrology. 172 (1–4): 231–245.
Saghafian, B., Julien, P. Y. and Rajaie, H. 2002. Runoff hydrograph simulation based on time variable isochrone technique. Journal of Hydrology. 261 (1–4): 193–203.
Saghafian, B., van Lieshout, A. M. and Rajaei, H. M. 2000. Distributed catchment simulation using a raster GIS. International Journal of Applied Earth Observation and Geoinformation. 2 (3–4): 199–203.
Saghafian, B. and Shokoohi, A. 2006. A corrected time-area technique for one-dimensional flow. International Journal of Civil Engineering. 4 (1): 34–41.
Shokoohi, A. and Saghafian, B. 2012. A semi analytical solution for rising limb of hydrograph in 2D overland flow. International Journal of Civil Engineering. 10 (1): 43–50.
Syed, A. U., Nejadhashemi, A. P., Safferman, S., Lusch, D., Bartholic, J. and Segerlind, L. J. 2012. A Comparative Analysis of Kinematic Wave and SCS-Unit Hydrograph Models in Semi-Arid Watershed. in XIX International Conference on Water Resources CMWR 2012.
Rosli, M. H., Abdul Malek, N. Kh., Jamil, N. R., Kamarudin, M. Kh. A. and Abdul Maulud, Kh. N. 2022. Performance evaluation of spatial lumped model and spatial distributed travel time model using event based rainfall for hydrological simulation. Arabian Journal of Geosciences. 15 (24): 1765.
Xiong, Y. and Melching, C. S. 2005. Comparison of Kinematic-Wave and Nonlinear Reservoir Routing of Urban Watershed Runoff. Journal of Hydrologic Engineering. 10 (1): 39–49.
Zakeri Niri, M. Saghafian, B., Golian, S., Moramarco, T. and Shamsai, A. 2012. Derivation of Travel Time Based on Diffusive Wave Approximation for the Time-Area Hydrograph Simulation. Journal of Hydrologic Engineering. 17 (1): 85–91.
Zakeri Niri, M., Saghafian, B. and Golian, S. 2016. Analytical Derivation of Overland Travel Time Based on Diffusive Wave Solution. Journal of Hydrologic Engineering. 21 (2): 04015065.
Zeraatkar, Z. 2016. Simulation of Birjand Urban Flood Using HEC-RAS and ARC-GIS. Watershed Management Research Journal. 29 (3): 41–56