پیش‌بینی تبخیر-تعرق مرجع روزانه با استفاده از مدل ترکیبی موجک-شبکه عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار گروه مهندسی آب دانشگاه زنجان، زنجان، ایران

چکیده

تبخیر-تعرق گیاه مرجع یکی از مهم‌ترین و مؤثرترین عوامل در بهینه‌سازی مصرف آب کشاورزی و مدیریت منابع آب می‌باشد. پیش‌بینی تبخیر-تعرق مرجع روزانه می‌تواند در پیش‌بینی نیاز آبی گیاهان و برنامه‌ریزی کوتاه‌مدت آبیاری مورد استفاده قرار گیرد. در سال‌های اخیر استفاده از شبکه‌های عصبی مصنوعی و مدل هیبریدی موجک-عصبی در پیش‌بینی پارامترهای هیدرولوژیکی بسیار متداول شده است. هدف تحقیق حاضر استفاده از مدل‌های شبکه عصبی مصنوعی و موجک-شبکه عصبی در پیش‌بینی تبخیر-تعرق مرجع در بازه 1 تا 28 روز در ایستگاه همدیدی تبریز و مقایسه بین آن‌ها می‌باشد. بدین منظور یک دوره آماری 10 ساله {(2000 الی 2009) که 7 سال (2000-2006) آن برای آموزش و 3 سال (2007-2009) }جهت آزمون و صحت سنجی مدل‌های پیشنهادی} در نظر گرفته شد. برای ایجاد سری زمانی تبخیر-تعرق مرجع روزانه در دوره موردنظر با استفاده از معادله استاندارد پنمن-مانتیث فائو 56 محاسبه گردید. ترکیب‌های متفاوتی از داده‌های ورودی (تأخیرهای مختلف) و انواع موجک‌های مادر مورد ارزیابی قرار گرفت. نتایج پیش‌بینی تبخیر-تعرق مرجع برای یک روز آینده، نشان داد که مدل ترکیبی موجک-عصبی (mm/day 07/0 RMSE= و 999/0R=) در مقایسه با مدل شبکه عصبی مصنوعی (mm/day 69/0 RMSE= و 964/0 R=) دارای توانایی و دقت بالاتری در پیش‌بینی تبخیر-تعرق روزانه برای یک روز آینده می‌باشد. هم­چنین نتایج نشان داد که استفاده از تأخیرهای زمانی 1 تا 7 (M7) و 1 تا 6 (M6) روزه بالاترین دقت را ارائه می‌دهند و استفاده از تأخیرهای کم­تر و تأخیرهای یک‌ساله دوساله دقت مدل را کاهش می‌دهند. بررسی انواع موجک‌های مادر نیز نشان داد که پیش ‌پردازش داده‌ها با موجک‌ ‌میر به دلیل پیچیدگی بیش­تر و تشابه به سری زمانی تبخیر-تعرق مرجع، می‌تواند موجب افزایش دقت، پیش‌بینی گردد. برای پیش‌بینی تبخیر-تعرق مرجع در 2 تا 28 روز آینده، مدل موجک-شبکه عصبی پیشنهادی مورد استفاده قرار گرفت. نتایج نشان داد که با بیشتر شدن زمان پیش‌بینی از 2 تا 28 روز، دقت مدل‌ها کاهش (R از 997/0 برای 2 روز تا 929/0 برای 28 روز) می‌یابد. هم­چنین در پیش‌بینی‌های 2 تا 12 روزه استفاده از تأخیرهای سالانه موجب کاهش دقت مدل گردید، درحالی‌که در پیش‌بینی‌های 13 تا 28 روزه استفاده از تأخیر زمانی سالانه افزایش دقت مشاهده گردید. در نهایت برای مقایسه مدل‌ها از نظر آماری، آزمون‌های t و F برای مقایسه میانگین و واریانس انجام گرفت. نتایج مقایسه نشان داد که کلیه مدل‌های پیشنهادی در سطوح 99 و 95 درصد تفاوت معنی‌داری وجود ندارد. 

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting of Daily Reference Crop Evapotranspiration Using Wavelet-Artificial Neural Network Hybrid Model

نویسنده [English]

  • Masoud Karbasi
Assistant professor of water Engineering Department of University of Zanjan., Zanjan., Iran
چکیده [English]

Reference crop evapotranspiration is one of the most important and effective factors for optimizing agricultural water consumption and water resources management. Forecasting of daily reference evapotranspiration can be used for short-term planning of irrigation water requirements. In recent years the use of artificial neural networks and wavelet-neural hybrid model has become very popular in the forecasting of hydrological parameters.  The aim of the present study is to use artificial neural network and wavelet-neural network models to forecast reference evapotranspiration in the range of 1 to 28 days ahead at Tabriz synoptic station. For this purpose, a 10-year period (2000 to 2009), 7 years (2000-2006) for training and 3 years (2007-2009) to test and validation were considered. To create daily reference evapotranspiration time series at the given period, standard equation Penman-Monteith 56 is used. Different combinations of input data (various delays) and various mother wavelets were used. Results of reference evapotranspiration forecasts for a one day ahead, showed that the wavelet-ANN model (RMSE=0.07 mm/day and R=0.999) compared to the artificial neural network model (RMSE=0.69 mm/day and R=0.964) has higher accuracy in forecasting of reference evapotranspiration. The results showed that the use of time delays of 1 to 7 (M7) and 1 to 6 (M6) days can provide the highest accuracy and fewer delays and delays from one year to two years can reduce the accuracy of the models. Comparison of mother wavelets showed that Meyer wavelet due to greater complexity and similarity to the time series of reference evapotranspiration would increase the accuracy of forecasting. To forecast reference evapotranspiration in 2 to 28 days ahead, the wavelet-neural network with Meyer wavelet model was used. The results showed that the increasing of the forecasting period from 2 to 28 days would decrease the accuracy of models (R is ranged from 0.997 to 0.929 for 2 and 28 days ahead). Also, at forecasting 2 to 12 days, annual delays reduced the accuracy of the model, while at 13 to 28-day annual delay increased the accuracy of models. Finally, to compare the models, statistically, t and F tests were performed to compare the mean and variance. The comparison showed that in all the proposed models, at 99 and 95 percent levels, there was no significant difference between the results and observations. The results of this study can be used in irrigation scheduling at study area.

کلیدواژه‌ها [English]

  • Crop water requirement
  • time series
  • Wavelet
  • Neural Network

آزادطلاتپه،ن.، به­منش،ج.، منتصری،م. 1390 . پیش‌بینی تبخیر-تعرق پتانسیل با استفاده از مدل­های سری زمانی نشریه آب و خاک (علوم و صنایع کشاورزی). 27 .1: 223-213.

به­منش،ج.، آزاد طلاتپه،ن.، منتصری.م.، بشارت،س. 1393. ارزیابی مدل­های سری زمانی خطی و غیر خطی بیلینییر در پیش‌بینی تبخیر- تعرق گیاه مرجع در ایستگاه سینوپتیک ارومیه. نشریه پژوهش آب در کشاورزی. 28 .1: 85-96

حسن‌زاده،ی.، کردانی،ع.، فاخری‌فرد،ا. 1391. پیش‌بینی خشکسالی با استفاده از الگوریتم ژنتیک و مدل ترکیبی شبکه عصبی-موجکی. فصلنامه علمی-پژوهشی آب و فاضلاب. 23. 3: 48-59.

رجایی،ط.، ابراهیمی،ه. 1393. مدل­سازی نوسان­های ماهانه آب زیرزمینی به وسیله تبدیل موجک و شبکه عصبی پویا. مجله مدیریت آب و آبیاری. 4. 1: 87-73.

شفائی،م.، فاخری فرد،ا.، دربندی،ص.، قربانی،م. 1392. پیش‌بینی جریان روزانه رودخانه با استفاده از مدل هیبرید موجک و شبکه عصبی؛ مطالعه موردی ایستگاه هیدرومتری ونیار در حوضه آبریز آجی چای. فصلنامه علمی پژوهشی مهندسی آبیاری و آب. 4. 14: 113-128.

شیروانی،ا.، هنر،ت. 1390. کاربرد مدل­های سری­های زمانی برای پیش­بینی تبخیر- تعرق در ایستگاه باجگاه. مجله پژوهش آب ایران. 5. 8: 142-135.

طوفانی،پ.،  مساعدی،ا.، فاخری فرد،ا. 1390. پیش‌بینی بارندگی با استفاده مستقیم از نظریه موجک. نشریه آب و خاک. 25. 5: 1226-1217

عبداللهی اسدآبادی،س.، دین پژوه،ی.، میرعباسی،ر.  1392. پیش‌بینی دبی متوسط روزانه جریان رودخانه بهشت آباد با استفاده از آنالیز موجک. نشریه آب و خاک. 28. 3: 534-545.

فولادمند،ح. 1389. پیش‌بینی ماهانه تبخیر- تعرق پتانسیل گیاه مرجع در استان فارس. مجله دانش آب و خاک. 20. 4: 157-169.

معروفی،ص.، امیرمرادی،ک.،  پارسافر،ر.  1392. پیش‌بینی جریان روزانه با استفاده از شبکه­های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای). نشریه دانش آب و خاک.23. 3: 93-103.

مؤمنی ب.، عباس پلنگی،ج.، اقدسی،ب. 1390.  تخمین تراز آب زیرزمینی با استفاده از شبکه های عصبی مصنوعی. چهارمین کنفرانس مدیریت منابع آب، دانشگاه صنعتی امیرکبیر تهران.

Adamowski,J and Sun,K. 2010. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology. 39. 1: 85-91.

Bachour,R., Maslova,I., Ticlavilca,A., Walker,W and McKee,M. 2015. Wavelet-multivariate relevance vector machine hybrid model for forecasting daily evapotranspiration. Stochastic Environmental Research and Risk Assessment.29. 2:1-15.

Budu,K. 2013. Comparison of wavelet-based ANN and regression models for reservoir inflow forecasting. Journal of Hydrologic Engineering. 19. 7: 1385-1400.

Mehr,A.D., Kahya,E and Olyaie,E. 2013. Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. Journal of Hydrology. 50. 5:240-249.

 Heil,C.E and Walnut,D.F. 1989. Continuous and discrete wavelet transforms. SIAM review. 31.4: 628-666.

Hykin,S. 1999. Neural Networks: A Comprehensive Foundation. Printice-Hall. Inc., New Jersey.

 Kisi,O. 2010. Wavelet regression model for short-term streamflow forecasting. Journal of Hydrology. 389.3: 344-353.

Kisi,O. 2008. The potential of different ANN techniques in evapotranspiration modelling. Hydrological Processes. 22. 14: 2449-2460.

Landeras,G., Ortiz-Barredo,A and López,J.J. 2009. Forecasting weekly evapotranspiration with ARIMA and artificial neural network models. Journal of Irrigation and Drainage Engineering. 135. 3: 323-334.

Luo,Y., Chang,X., Peng,Sh., Khan,Sh., Wang,W., Zheng,Q., Cai,X. 2014. Short-term forecasting of daily reference evapotranspiration using the Hargreaves–Samani model and temperature forecasts. Agricultural Water Management.136. 2: 42-51.

Nourani,V., Hosseini Baghanam,A., Adamowski,  and Kisi,O. 2014. Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review. Journal of Hydrology. 514. 3: 358-377.

Shoaib,M., Shamseldin,A.Y., Melville,B.W and Khan,M.M. 2015. Runoff forecasting using hybrid Wavelet Gene Expression Programming (WGEP) approach. Journal of Hydrology.272. 1:326-344.

Tabari, H., Marofi, S., Sabziparvar, A.A. 2010. Estimation of daily pan evaporation using artificial neural network and multivariate non-linear regression. Irrigation Science. 28. 5:399–406.

Tabari,H., Marofi,S., Aeini,A., Talaee,P.H., Mohammadi,K. 2011. Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and Forest Meteorology. 151. 2: 128-136.

Trajkovic,S., Todorovic,B.,  Stankovic,M. 2003. Forecasting of reference evapotranspiration by artificial neural networks. Journal of Irrigation and Drainage Engineering. 129. 6: 454-457.

Wang,W.G and Luo,Y.F. 2007. Wavelet network model for reference crop evapotranspiration forecasting. In Wavelet Analysis and Pattern Recognition. International Conference on IEEE. 2 : 751-755.