روند توسعه اراضی کشاورزی در حوضه هیرمند افغانستان و چشم‌انداز آن با استفاده از طبقه‌بندی شی‌پایه تصاویر ماهواره‌ای و مدل ژئومد

نویسندگان

1 دانش آموخته دکتری گروه منابع آب دانشگاه تربیت مدرس

2 استاد دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

3 پژوهشکده مطالعات و تحقیقات منابع آب، موسسه تحقیقات منابع آب، وزارت نیرو،

4 استاد مرکز سیاست‌های محیط زیستی امپریال کالج لندن،

5 استادیار گروه اقتصاد دانشگاه شریف

چکیده

در برنامه­ریزی برای حوضه­های آبریز پر چالش فرامرزی مانند هیرمند، از مهم­ترین موارد، ظرفیت توسعه کشاورزی در آن­ها می­باشد. این مهم، هدف این تحقیق قرار گرفته و در آن ابتدا تغییرات کاربری اراضی طی سال­های 1369 و 1392 با استفاده از تصاویر ماهواره­ای و روش طبقه‌بندی شی­گرا مورد ارزیابی قرار گرفت. نتایج به دست آمده حاکی از افزایش کشت­های آبی از 10 هزار کیلومترمربع در سال 1369 به حدود 18 هزار کیلومترمربع در سال 1392 و کاهش حدود 70 درصدی سطح اراضی دیم می‌باشد. در ادامه براساس روش ژئومد و تحلیل­های زنجیره مارکوف، احتمال تغییرات کاربری اراضی آبی در این حوضه و چشم انداز تغییرات مکانی - زمانی آن مورد بررسی قرار گرفت. بر این اساس مجموع، سطح زیر کشت در افق آتی برابر با 25465 کیلومترمربع قابل پیش­بینی است که نشان دهنده توان 7465 کیلومترمربع توسعه، می‌باشد. اما این سطح بدون در نظر گرفتن محدودیت منابع آب می‌باشد که با لحاظ کردن این محدودیت، حداکثر سطح توسعه برابر با 4366 کیلومترمربع می­باشد. بررسی موقعیت مکانی این تغییرات نشان دهنده توسعه در مناطق پایین­دست سد کجکی و زیرحوضه ارغنداب می‌باشد که تهدیدی برای امنیت و محیط زیست شرق کشور محسوب می‌گردد. از طرفی نیز با توجه به سیاست­های دولت برای کشت فرا­مرزی، این ظرفیت می­تواند برای تعاملات دو کشور و حصول مدیریت برد - برد در حوضه هیرمند مورد توجه قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

The Trend and Future Prospect of Agricultural Land Development in Afghanistan's Helmand River Basin Based on Satellite Images and GEOMOD Method

نویسندگان [English]

  • mahbobeh Zarezadeh 1
  • Saeid Morid 2
  • nemat olah Karimi 3
  • kaveh Madani 4
  • farshad fatemi 5
1 Department of Water Resources Engineering, Tarbiat Modares University
2 Professor, Faculty of Agricultural, Tarbiat Modares University., Tehran., Iran
3 Water Research Institute, Ministry of Energy, Tehran
4 Centre for Environmental Policy, Imperial College London
5 Graduate School of Management and Economics, Sharif University of Technology
چکیده [English]

One of the most important issues to consider in conflicting trans-boundary river basins like Helmand is the potential for agricultural development. This paper evaluates the land use changes between in the Helmand basin between 1990 and 2013 using remote sensing images and an object-based method. The results show the irrigated land area has changed from 10,000 to 18,000 km2 during this period while rainfed areas decreased by 70%. Using the GEOMOD method and Markov chain evaluations, it is projected that agricultural areas can expand up to 25,465 km2, that means an additional 7465 km2 of agricultural land development. Considering water availability limitation, the maximum agricultural land development cannot exceed 4366 km2. The spatial evaluation of this progress revealed that development is mainly expected to take place in the Arghandab and Middle Helmand sub-basins that can seriously affect the river inflows to Iran and threaten the security and ecosystem in the region. However, considering the new policy of Iran on cross-border farming this can be turned to an opportunity for a win-win management of the Helmed trans-boundary river basin.

کلیدواژه‌ها [English]

  • Helmand river basin
  • land use
  • Object based classification
  • satellite images
اندریانی،ص. 1393. کاربرد تکنیک­های سنجش از دور و سیستم اطلاعات جغرافیایی در بررسی تغییرات کاربری اراضی و تاثیر آن بر دبی رودخانه (مطالعه موردی: صوفی­چای)، دانشکده جغرافیا و برنامه‌ریزی، گروه ژئومورفولوژی، دانشگاه تبریز، تبریز، ایران.
حاج­حسینی،م.ر. 1392. بررسی ارتباط تغییرات کاربری اراضی دشت هیرمند و تغییرات سطح تالاب­های هامون با استفاده از تصاویر ماهواره­ای، دانشگاه تربیت مدرس، تهران، ایران
شریعتمداری،م. 1394. دولت دنبال کشت فرامرزی/ محصولات آب بَر در خارج کشور کاشته می‌شوند. خبرگزاری مهر، شناسه خبر: 2776309 - پنجشنبه ۲۱ خرداد ۱۳۹۴.
فرخ­نیا،ا. 1394. نقش تغییرات کاربری اراضی و روند در متغیرهای اقلیمی بر هیدرولوژی حوضه آبریز دریاچه ارومیه، دانشگاه تربیت مدرس، تهران، ایران.
Afghanistan National Development Strategy. 2008 - 2013. A Strategy for Security, Governance, Rule of Law, Human Rights, Social-Economic Gorwth and Poverty Reduction Social and Economic Development Pillar Health; Education; Culture, Media and Youth; Agriculture and Rural Development; Social Protection; Refugees, Returnees and Internally Displaced Persons; and Economic Governance and Private Sector Development Sector Strategies, VOLUME FOUR Islamic Republic of Afghanistan
Anderson,J., Hardy,E., Roach,J., Witmer,R. 1976. A land use and land cover classification for use with remote sensor data. US Geological Survey Professional Paper no. 964.
Balzter,H. 2000. Markov chain models for vegetation dynamics. Ecological Modelling. 126.2: 139-154
Bayramov,E., Buchroithner,M., Bayramov,R. 2016. Quantitative assessment of 2014-2015 land-cover changes in Azerbaijan using object-based classification of LANDSAT-8 timeseries. Modeling Earth Systems and Environment. 2.35: 1-13.
Brown,D.G., Pijanowski,B.C., Duh,J.D. 2000. Modeling the relationships between land use and land cover on private lands in the Upper Midwest, USA. Journal of Environmental Management. 59.4: 247-263
Burrough,P.A. 1989. Fuzzy Mathematical Methods for Soil Survey and Land Evaluation. Journal of Soil Science.40: 477-492
Campbell,J.B., Wynne,R.H. 2011. Introduction to Remote Sensing. The GuilfordPress, New York, USA
Eastman,R.J. 2012. IDRISI for Windows :IDRISI Selva Manual,. Clark University, New york
FAO. 2015. Analysis on water availability and uses in Afghanistan river basins, Water accounting through Remote Sensing (WA+) in Helmand River Basin.  FAO project TCP /AFG/3402
Geri,F., Amici,V., Rocchini,D. 2011. Spatially-based accuracy assessment of forestation prediction in a complex Mediterranean landscape. Applied Geography. 31: 881-890.
Gibson,G.R., Campbell,J.B., Wynne,R.H. 2012. Three decades of war and food insecurity in Iraq. Photogrammetric Engineering and Remote Sensing. 78.8: 885-895.
Kwadijk,J., Diermanse,F. 2006. Integrated water resources management for the Sistan closed inland delta, Iran: Forecasting the flow from Afghanistan, Water Research Institute hydraulics, WL Delft.
Li,L., Yu,Y., Ye,G.J., Ge,Q., Ou,X., Wu,H., Zhang,Y. 2014. Black phosphorus field-effect transistors. Nature nanotechnology. 9.5: 372-377.
Liu,D., Xia,F. 2010. Assessing object-based classification: advantages and limitations. Remote sensing letters. 1.4: 187-194.
Lu,D., Mausel,P., Brondizio,E., Moran,E. 2004. Change detection techniques. International Journal of Remote Sensing. 25: 2365-2401.
Lyons,M.B., Phinn,S.R., Roelfsema,C.M. 2012. Long term land cover and seagrass mapping using Landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS Journal of Photogrammetry and Remote Sensing. 71: 34-46.
Mondal,P., Southworth,J. 2010. Evaluation of conservation interventions using a cellular automata-Markov model,. Forest Forest Ecology and Management,. 260.10:1716-1725.
Oruc,I., Maloney,L.T., Landy,M.S. 2003. Weighted linear cue combination with possibly correlated error. Vision Research. 43: 2451-2468.
Platt,R.V., Schoennagel,T. 2009. An object-oriented approach to assessing changes in tree cover in the Colorado Front Range 1938-1999, Forest Ecology and Management. 258:1342-1349.
Pontius,J.R., Cornell,G.D., Hall,C.A. 2001. Modeling the spatial pattern of land-use change with GEOMOD2: application and validation for Costa Rica. Agriculture, Ecosystems and Environment 85: 191-203.
Pontius,J.R., Malanson,J. 2005. Comparison of the structure and accuracy of two land change models. International Journal of Geographical Information Science. 19.2: 243-265.
Robertson,L., King,D.J. 2011. Comparison of pixel- and object-based classification in land cover change mapping. International Journal of Remote Sensing.  32.6:1505-1529.
Schmucker,K.J. 1982. Fuzzy Sets, Natural Language Computations and Risk Analysis ,.Computer Science Press,. p.7.
Sisson,S.A., Fan,Y., Tanaka,M.M. 2007. Sequential monte carlo without likelihoods. Proceedings of the National Academy of Sciences. 104.6: 1760-1765.
Sloan,S., Pelletier,J. 2012. How accurately may we project tropical forest-cover change? A validation of a forward-looking baseline for REDD. Global Environmental Change, 22(2). 440-453
Stephenne,N., Lambin,E.F. 2001. A dynamic simulation model of land-use changes in Sudano-sahelian countries of Africa (SALU). Agriculture, ecosystems and environment. 85.1: 145-161.
Whiteside,T.G., Boggs,G.S., Maier,S.W. 2011. Comparing object-based and pixel-based classifications for mapping savannas. Int J Appl Earth Obs Geoinform. 13.6:884-893.
Wu,Q., Li,H.Q., Wang,R.S., Paulussen,J., He,Y., Wang,M., Wang,Z. 2006. Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and urban planning. 78.4: 322-333.