تغییرات زمانی نفوذ آب باران به خاک تحت تأثیر محتوای رطوبت اولیه خاک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 دانشجوی سابق کارشناسی ارشد علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

3 دانشجوی دکتری علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

چکیده

رطوبت اولیه خاک نقشی اساسی در نفوذپذیری خاک طی بارندگی دارد. این پژوهش به‌منظور بررسی تغییرات نفوذ آب به خاک در سطوح مختلف رطوبتی در خاک‌های با بافت مختلف تحت باران شبیه‌سازی شده انجام گرفت. آزمایش در سه دامنه با شیب یکسان اما با خاک متفاوت (لومی، لوم‌شنی و لوم‌رس‌شنی) در چهار سطح رطوبتی اولیه هر کدام با سه تکرار در قالب طرح کاملاً تصادفی اجرا گردید. در هر خاک 12 کرت به ابعاد 80 سانتی‌متر × 60 سانتی‌متر در امتداد شیب ایجاد شد. ابتدا خاک داخل کرت‌ها به روش آبیاری ثقلی اشباع و در فواصل زمانی 1، 4، 7 و 10 روز بعد، رطوبت جرمی خاک‌ها تعیین شد. هر کرت تحت یک رخداد باران شبیه‌سازی شده با شدت 55 میلی‌متر بر ساعت و مدت 30 دقیقه قرار گرفت. نتایج نشان داد که محتوای رطوبتی خاک تحت تأثیر بافت خاک (خاک لومی، لوم‌شنی و لوم‌رس‌شنی) و نیز روز پس از اشباع‌سازی کرت‌ها (1، 4، 7 و 10 روز) قرار دارد (001/0P<). متوسط سرعت نفوذ در کل مدت بارندگی (زمان 30 دقیقه) در خاک لومی، لوم‌شنی و لوم‌رس‌شنی به ترتیب 5/30، 9/41 و 8/41 میلی‌متر بر ساعت بود. این موضوع به‌نوبه خود تحت تأثیر محتوای رطوبت اولیه خاک و هم‌چنین تخلخل درشت خاک بود.

کلیدواژه‌ها


عنوان مقاله [English]

Time variations of rainfall infiltration into the soil under the influence of soil initial moisture

نویسندگان [English]

  • Alireza Vaezi 1
  • Mehran Behtari 2
  • Majid Foroumadi 3
1 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Zanjan
2 Former M.Sc. Student of Soil Science, Faculty of Agriculture, University of Zanjan
3 Ph.D. Student of Soil Science, Faculty of Agriculture, University of Zanjan
چکیده [English]

Initial soil moisture has a major role in water infiltration during a rainfall event. The study was conducted to investigate water variations of infiltration as affected by initial moisture contents in different soil textures under the simulated rainfall. The study was performed in three soil textures (Loamy, Sandy loam and Sandy clay loam) with four initial soil moisture contents at three replications as a completely randomized design in a hillslope located. Twelve plots with a dimension of 60 cm × 80 cm were installed up to down in the hillslope. The plots were gravitationally saturated and soil moisture content was determined by weight method after 1, 4, 7 and 10 days. The plots were exposed to five simulated rainfalls with an intensity of 55 mm h-1 for 30 min and 10-day interval. Results indicated that soil moisture was affected by soil texture (Loamy, Sandy loam and Sandy clay loam) and the day after the saturated (1, 4, 7 and 10 days) of the plots (P<0.001). The average infiltration rate in the total rainfall period (30 min) was 30.5, 41.9 and 41.8 mm.h-1 in Loamy, Sandy loam and Sandy clay loam soil respectively. In turn, this was influenced by the soil moisture and also the coarse soil porosity.

کلیدواژه‌ها [English]

  • Double ring
  • Soil texture
  • Saturated hydraulic conductivity
بای‌بوردی، م. 1390. اصول مهندسی آبیاری جلد اول روابط آب و خاک. انتشارات دانشگاه تهران. چاپ نهم. 44-25.

بشارت، ف و واعظی، ع.ر. 1394. تأثیر الگوی توزیع زمانی بارندگی طی رخداد بر رواناب و هدررفت خاک تحت باران‌های شبیه‌سازی شده. علوم و مهندسی آبخیزداری ایران. 9.29: 18-10.

بهتری، م و واعظی، ع.ر. 1396. تأثیر مقدار رطوبت اولیه خاک بر تولید رواناب و هدررفت خاک در بافت‌های مختلف تحت باران شبیه‌سازی شده. علوم و مهندسی آبخیزداری ایران. 11.39: 21-12.

سهرابی، ت و پایدار، ز. 1394. اصول طراحی سیستم‌های آبیاری. انتشارات دانشگاه تهران. چاپ سوم. 146-120.

شعبانی، ع.، جهانبازی، الف.، احمدی، ح.، مقیمی، م. م و بهرامی، م. 1397. بررسی نفوذپذیری خاک‌های سنگریزه‌ای در زیر و بین درختان پرتقال و زیتون شهرستان فسا. نشریه علوم آب و خاک، 22. 1: 185-175.

کلانتری، م.، عباسی ع و شیرانی، م. 1387. مطالعات طرح آمایش استان زنجان. معاونت برنامه ریزی استانداری زنجان.

واعظی، ع.ر و حسن‌زاده، ح. 1395. بررسی هدررفت خاک در کرت‌های کوچک حاوی خاکدانه‌های با بافت مختلف در رخدادهای پیاپی باران شبیه‌سازی شده. نشریه علوم آب و خاک. 20.75: 212-201.

Angers, D.A. and Mehuys, G.R. 1993. Aggregate stability to water. Soil sampling and methods of analysis. 651-657.

Blake, G.R. and Hartge, K.H. 1986. Bulk Density 1. Methods of Soil Analysis: Part 1-Physical and Mineralogical Methods, (methodsofsoilan1). 363-375.

Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy journal. 54.5: 464-465.

Bronstert, A. and Bárdossy, A. 1999. The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale. Hydrology and Earth System Sciences Discussions. 3.4: 505-516.

de Goncalves, L., Shuttleworth, W.J., Chou, S.C., Xue, Y., Houser, P.R., Toll, D.L., Marengo, J. and Rodell, M. 2006. Impact of different initial soil moisture fields on Eta model weather forecasts for South America. Journal of Geophysical Research: Atmospheres. 111(D17).

De Lima, J.L.M.P., Torfs, P.J.J.F. and Singh, V.P., 2002. A mathematical model for evaluating the effect of wind on downward-spraying rainfall simulators. Catena, 46.4: 221-241.

Duiker, S.W., Flanagan, D.C. and Lal, R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena. 45.2: 103-121.

English, N.B., Weltzin, J.F., Fravolini, A., Thomas, L. and Williams, D.G. 2005. The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. Journal of Arid Environments. 63.1: 324-343.

Gee, G.W. and Bauder, J.W. 1986. Particle-size analysis 1(No. methodsofsoilan1. 383-411. Soil Science Society of America, American Society of Agronomy.

Hillel, D. 1998. Environmental Soil Physics. Academic Press. San Diego, CA.

Hillel, D. 2004. Introduction to environmental soil physics. Elsevier Academic Press. 93-126.

Jain, M.K., Kothyari, U.C. and Raju, K.G.R. 2004. A GIS based distributed rainfall–runoff model. Journal of Hydrology. 299.1-2:107-135.

Kumar, C.P. 2006. Groundwater Flow and Contaminant Transport Models: An Overview.  Journal of Applied Hydrology. Association of Hydrologists of India. 2: 94-110.

Lange, J., Leibundgut, C., Greenbaum, N. and Schick, A.P. 1999. A noncalibrated rainfall‐runoff model for large, arid catchments. Water Resources Research. 35.7: 2161-2172.

Lassabatere, L., Angulo-Jaramillo, R., Goutaland, D., Letellier, L., Gaudet, J.P., Winiarski, T. and Delolme, C. 2010. Effect of the settlement of sediments on water infiltration in two urban infiltration basins. Geoderma. 156.3-4: 316-325.

Lee, H., Zehe, E. and Sivapalan, M. 2006. Predictions of rainfall-runoff response and soil moisture dynamics in a microscale catchment using the CREW model. Hydrology and Earth System Sciences Discussions. 3.4: 1667-1743.

Lili, M., Bralts, V.F., Yinghua, P., Han, L. and Tingwu, L. 2008. Methods for measuring soil infiltration: State of the art. International Journal of Agricultural and Biological Engineering. 1.1: 22-30.

Liu, H., Lei, T.W., Zhao, J., Yuan, C.P., Fan, Y.T. and Qu, L.Q. 2011. Effects of rainfall intensity and antecedent soil water content on soil infiltrability under rainfall conditions using the run off-on-out method. Journal of Hydrology. 396.1-2: 24-32.

Mamedov, A.I., Huang, C. and Levy, G.J. 2006. Antecedent moisture content and aging duration effects on seal formation and erosion in smectitic soils. Soil Science Society of America Journal. 70.3: 832-843.

Mamedov, A.I., Levy, G.J., Shainberg, I. and Letey, J. 2001. Wetting rate, sodicity, and soil texture effects on infiltration rate and runoff. Soil Research. 39.6: 1293-1305.

Murugayah, R.A., Gandaseca, S., Ahmed, O.H. and Majid, N.M. 2009. Effect of different ages of a rehabilitated forest on selected physico-chemical properties. American Journal of Applied Sciences. 6.6: 1043.

Page A.L. 1982. Method of soil analysis. Part 2: chemical and microbiological properties. Soil Science Society of American Madison, Wisconsin, USA.

Sahu, R.K., Mishra, S.K., Eldho, T.I. and Jain, M.K. 2007. An advanced soil moisture accounting procedure for SCS curve number method. Hydrological Processes: An International Journal. 21.21: 2872-2881.

Sande, L. and Chu, X. 2012. Laboratory experiments on the effect of microtopography on soil-water movement: Spatial variability in wetting front movement. Applied and Environmental Soil Science. 2012.

Shukla, M.K., Lal, R. and Unkefer, P., 2003. Experimental evaluation of infiltration models for different land use and soil management systems. Soil Science. 168.3: 178-191.

Turner, E.R. 2006. Comparison of infiltration equations and their field validation with rainfall simulation (Doctoral dissertation).

Ulrich, U., Dietrich, A. and Fohrer, N. 2013. Herbicide transport via surface runoff during intermittent artificial rainfall: a laboratory plot scale study. Catena, 101. 38-49.

Vermang, J., Demeyer, V., Cornelis, W.M. and Gabriels, D. 2009. Aggregate stability and erosion response to antecedent water content of a loess soil. Soil Science Society of America Journal. 73.3: 718-726.

Walkley, A. and Black, I.A. 1947. Determination of organic matter in the soil by chromic acid digestion. Soil Sci. 63: 251-264.

Wei, L., Zhang, B. and Wang, M. 2007. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agricultural water management. 94.1-3: 54-62.