بررسی مقایسه ای پارامترهای هیدرولیکی تاثیرگذار بر مشخصات پرش هیدرولیکی در کانال های با مقاطع مرکب با استفاده از روش مبتنی بر کرنل SVM

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد سازه های هیدرولیکی، دانشکده عمران دانشگاه آزاد اسلامی واحد اهر

2 گروه عمران، داتشکده فنی، دانشگاه آزاد اسلامی واحد اهر - اهر - ایران

چکیده

پرش هیدرولیکی متداول‌ترین روش جهت استهلاک انرژی جنبشی آب در پایین‌دست سرریزها، شوت‌ها و دریچه‌ها می‌باشد. تاکنون، روابط متعددی برای پیش بینی مشخصات پرش هیدرولیکی ارائه شده اند. به دلیل پیچیده بودن پدیده پرش، نتایج حاصل از این روابط در شرایط مختلف یکسان نبوده و جامعیتی برای تعمیم کلی ندارد. در تحقیق حاضر، مشخصات پرش هیدرولیکی از جمله نسبت اعماق متناوب و طول پرش در کانال های مرکب (مقطع مستطیلی و ذوزنقه ای) با بستر زبر با استفاده از روش ماشین بردار پشتیبان (SVM) تخمین زده شده است. مدل های متفاوتی تعریف شده و نرخ تأثیر پارامترهای ورودی در هر نوع کانال مورد بررسی قرار گرفته است. مقایسه نتایج حاصل از روش رگرسیون ماشین بردار پشتیبان قابلیت و کارایی بالای این روش را در تخمین مشخصات پرش هیدرولیکی به خوبی نشان داد. ملاحظه گردید که مدل با پارامترهای ورودی (نسبت فاصله المان های زبر به ارتفاع آن ها) Fr1, w/z (عدد فرود) منجر به نتایج دقیق تری می گردد و مشخصات المان های زبر به کار رفته در بستر کانال در تخمین مشخصات پرش تاثیرگذار است. ﺑﻬﺘﺮﻳﻦ ﺣﺎﻟﺖ ارزﻳﺎﺑﻲ برای داده های آزﻣﻮن در کانال ذوزنقه ای برای نسبت اعماق متناوب با مقادیر R=0.979, DC=0.975 ,RMSE=0.046 و برای طول پرش هیدرولیکی با مقادیر R=0.935, DC=0.858 ,RMSE=0.072 بدست آمد. همچنین نتایج آنالیز حساسیت نشان داد که عدد فرود تاثیرگذارترین پارامتر در تخمین مشخصات پرش هیدرولیکی است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparative Study of Effective Hydraulic Parameters on hydraulic jump characteristics in Channels with Compound Sections using Kernel Based SVM Approach

نویسندگان [English]

  • Ramin Tabrizi 1
  • SEYEDMAHDI SAGHEBIAN 2
1 M. SC, Hydraulic Structure Engineering, Department of Civil Engineering, Ahar Branch Islamic Azad Univer-sity, Ahar, Iran
2 Civil, IAU
چکیده [English]

Hydraulic jump is the most common method of dissipating water’s kinetic energy in downstream of spillways, shoots and valves. So far several relations have been developed to estimate hydraulic jump characteristics, however, the results of these equations are not general and acceptable due to the uncertainty of the function. In this study, hydraulic jump character-istics such as sequence depth ratio and hydraulic jump were estimated in compound channels (rectangular and trapezoidal channels) with rough beds using Support Vector Machine (SVM). Different models were developed and the influence rate of input parameters in each channel was investigated. Comparison of the obtained results of support vector machine showed the high efficiency of this method in estimation of hydraulic jump characteristics. It was observed that model with input parameters of Fr₁( Fraud number), w/z (ratio of rough elements space to height of them) led to most accurate results and rough elements properties were effective in hydraulic jump characteristics estimation. The best result for test series was obtained for the sequence depth ratio with the values of R=0.979, DC=0.975 and RMSE=0.046 and for and the hydraulic jump length with the values of R=0.935, DC=0.858 and RMSE=0.072 in trapezoidal channel. Also, the results of sensitivity analysis indicated that Fraud number is the most significant parameter in estimation of hydraulic jump charac-teristics.

کلیدواژه‌ها [English]

  • Compound channel
  • Hydraulic jump
  • Rough bed
  • Support Vector Machine
اسدی، ف. فضل اولی، ر. عمادی، ع. 1395. بررسی مشخصات پرش هیدرولیکی در شرایط بستر زبر با استفاده از مدل فیزیکی. مجله حفاظت آب و خاک. 23(5): 295-306.

اسدی، ف. فضل اولی، ر. عمادی، ع. 1395. مطالعه آزمایشگاهی استهلاک انرژی و طول پرش هیدرولیکی در شرایط بستر زبر با بلوک‏های مکعبی‏ در پایین‏دست دریچه کشویی. نشریه آبیاری و زهکشی ایران. 11(4): 597-608.

بختیاری، م. 1378. بررسی هیدرولیکی پارامترهای جهش هیدرولیکی در مقاطع واگرا (تبدیلهای خروجی)، پایاننامه کارشناسی ارشد دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.

بدیع زادگان، ر. اسماعیلی، ک. فغفورمغربی، م.  صانعی، س.م. 1390. مشخصات پرش هیدرولیکی در حوضچه های آرامش کانال های آبیاری با بستر موج دار. نشریه آب و خاک (علوم و صنایع کشاورزی). 25(3): 676-687.

 ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. 2000. Artificial Neural Networks in hydrology. I: Preliminary concepts. Journal of Hydrologic Eng. ASCE 5(2): 115-123.

Babaali, H., Shamsai, A. and Vosoughifar, H. 2015. Computational modeling of the hydraulic jump in the stilling basin with convergence walls using CFD codes. Arabian Journal for Science and Engineering, 40(2): 381-95.

Dawson, W.C. & Wilby, R. 1998 An artificial neural network approach to rainfall-runoff modelling. Journal of Hydrological Sciences, 43(1): 47-66.

Evecimen, T, U. 2005. The effect of prismatic roughness elements on hydraulic jump: The degree master of science. Middle East technical University.

Evcimen, T. U. 2012. Effect of prismatic roughness on hydraulic jump in trapezoidal channels. (Doctoral dissertation), Middle East Technical University.

Gupta, S.K., Mehta R.C., & Dwivedi, V.K. 2013. “Modeling of relative length and relative energy loss of free hydraulic jump in horizontal prismatic channel”, Procedia Engineering, 51: 529-537.

Herbrand, K. 1970. Der räumliche Wechselsprung, Literaturstudie Bericht Nr. 18 der Versuchsanstalt für Wasserbau der Technischen Universität München, Oskar.

Khan, M. S & Coulibaly, P. 2006. Application of Support Vector Machine in Lake Water Level Prediction. J. Hydrol. Eng, 11 (3): 199–205.

Koloseus, H.J., Ahmad, D. 1969. Circular hydraulic jump. Journal of the Hydraulics Division, 2(10): 775-780.

Palermo, M. and Pagliara, S. 2018. Semi-theoretical approach for energy dissipation estimation at hydraulic jumps in rough sloped channels. Journal of Hydraulic Research, 21: 1-10.

Roushangar, K. and Ghasempour, R. 2017 Prediction of non-cohesive sediment transport in circular channels in deposition and limit of deposition states using SVM. Journal of Water Science & Technology: Water Supply, 17(2): 537-551.

Shiri, J., Kisi, O. 2011. Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations.  Journal of Comput. Geosci, 37 (10): 1692–1701.

Siviapragasam, C. and Liong S. 2001. Rainfall and runoff forcasting with SSA-SVM approach. Journal   of Hydroinformation, 3: 141-152.

Vapnik, V. 1995. The Nature of Statistical Learning Theory. Data Mining and Knowledge Discovery, 1-47.

Wang, H. and Murzyn, F. 2017. Experimental assessment of characteristic turbulent scales in two-phase flow of hydraulic jump: from bottom to free surface. Environmental Fluid Mechanics, 17(1): 7-25