Investigation of Arsenic Release Mechanism and Prediction of its Concentration Variations In GroundwaterResources (Case Study: Sirjan Plain)

Document Type : Original Article

Authors

1 Department of water engineering, Shahid Bahonar University, Kerman, Iran

2 3Department of water engineering, Shahid Bahonar University, Kerman, Iran

Abstract

Among heavy metals, arsenic has been identified as a carcinogenic element. High concentrations of arsenic in water resources can be a major concern for public health and the environment. Arsenic pollution in the groundwater resources has been reported in many parts of the world and Iran, especially in some parts of Kerman province. In the present study, Arsenic release mechanism and prediction of its concentration variations in groundwater resources were investigated in Sirjan Plain, in Kerman Province. For this purpose, after conducting primary field studies and taking into account the position of the piezometric wells, 21 piezometric wells were selected across the plain surface and the layers of clay in them were examined. Then, sampling of groundwater resources was conducted seasonally from agricultural and drinking wells near piezometric wells. The results showed that the concentration of arsenic was directly related to the clay texture of the earth's layers. The high concentration of arsenic was related to the discharge of groundwater from the clay layer and the oxidation and dissolution of arsenic in groundwater. Therefore, the Oxidation-Reduction cycle is one of the effective factors on releasing of arsenic in the region. In order to the prediction of arsenic concentration variations in the next 5 years, Quantitative Modeling was done using GMS software with a focus on the piezometer wells that had a potential for the increase in the unsaturated clay thickness due to the reducing level of groundwater and the presence of clay layers in them. Based on the results of modeling and relationships between arsenic concentration variations and groundwater level variations during the sampling period, it was determined that arsenic concentrations increase with groundwater resources discharge. Therefore, the quantity and quality of groundwater will decreased with the continued of exploitation of aquifers. According to these results, water management and reduced harvesting of groundwater resources can be effective on the reduction of arsenic concentration increasing rate.

Keywords


آذری،ن.، تقی زادگان،م.، خوشدلی،ف.، دباغی،ح.، رفسنجانی نژاد،س.، قنواتی،ن. 1394. بررسی چالشهای توسعه در استان کرمان، مرکز بررسی­های استراتژیک ریاست جمهوری
بابایی، ی.، علوی مقدم، م.، قاسم زاده، ف.، ارباب زوار،م. 1387. بررسی آلودگی آب­های سطحی کوهسرخ کاشمر به ارسنیک، علوم و تکنولوژی محیط زیست، دوره دهم، شماره 3.
سازمان مدیریت و برنامه­ریزی استان کرمان. 1395. سالنامه آماری
دهقانی، م.، عباس نژاد، ا.1389. آلودگی سفره آب زیرزمینی به نیترات، سرب آرسنیک و کادمیوم، محیط شناسی، سال سی و ششم، شمارة۵۶، صفحه 100-87
دستورالعمل نمونه­برداری آب، معاونت امور فنی دفتر تدوین ضوابط و معیارهای فنی سازمان مدیریت و برنامه­ریزی جمهوری اسلامی ایران. 1383. نشریه شماره 274
محمدی زاده کرمانی نژاد، پ. 1394. پهنه­بندی میزان آرسنیک در منابع آب شرب شهرستان جیرفت و ارائه راهکار بهینه جهت حذف آن، پایان نامه کارشناسی ارشد دانشگاه آزاد اسلامی واحد بندرعباس
وزارت نیرو، شرکت مدیریت منابع آب، معاونت حفاظت و بهره­برداری. 1397. گزارش دشتهای ممنوعه کشور
Ahuja, F. 2008.Arsenic contamination of groundwater.John Wiley.
Huaming, G., Yang, Z., Lina, X., Yongfeng, J. 2012. Spatial variation in arsenic and fluoride concentrations of shallow groundwater from the town of Shahai in the Hetao basin, Inner Mongolia.Applied Geochemistry, 2187–2196.
Kelly, B., Payne, T.M., and Abdel, F. 2005. Adsorption of Arsenate and Arsenite by Iron-treated activated carbon and Zeolites: effects of pH, temperature, and ionic strength. Journal.of Environmental Science and Health., 40 (4), 723-49.
Kartinen, E.O., Martin, C.J. 1995. An overview of arsenic removal processes. Desalination, 103 (1-2), 78-88.
LeeAnn, M., Birgit, H., Derek, S. 2011. Seasonal fluctuations and mobility of arsenic in groundwater resources, Anchorage, Alaska.Applied Geochemistry 1811–1817.
Qi Guo, Huaming, G., Yuance, Y., Shuangbao, H., Fucun, Z. 2014. Hydrogeochemical contrasts between lowand high arsenic groundwater and its implications for arsenic mobilization in shallow aquifers of the northernYinchuan Basin, P.R. China. Journal of Hydrology 464–476
Rahman, M.T., Mano, A., Udo, K., Ishibashi, Y. 2010. Exploring safety and sustainability of aquifers in arsenic affected Holocene sedimentary deposits based on predictive modeling of sorption-mobilization characteristics. Appl. Geochem. 26, 636–647.
Ravenscroft, P., Brammer, H., Richards, K. S. 2009. Arsenic pollution a global synthesis. Wiley Blackwell, U. K.
Smedley, P., Kinniburgh, D. 2002.A review of the source, behavior and distribution of arsenic in natural waters.Applied geochemistry, 17(5):517-68