جانمایی حسگرهای کیفی در شرایط عدم قطعیت تقاضا در شبکه‌های توزیع آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشگاه قم، قم، ایران

2 دانشکده فنی، گروه مهندسی عمران،دانشگاه قم،قم، ایران

چکیده

ورود آلودگی به صورت تصادفی یا عمدی به شبکه‌های توزیع آب به عنوان یکی از شریان‌های حیاتی هر کشور، موجب خسارت‌های گسترده در ابعاد مختلف جامعه می‌شود. تشخیص و هشدار به موقع تزریق آلودگی در شبکه توزیع آب بسیار ضروریست. این مطالعه با هدف جانمایی بهینه حسگرهای کیفی، روش جدیدی بر پایه نامشخص بودن زمان و مکان ورود آلودگی و عدم قطعیت تقاضا ارائه می‌دهد. این مطالعه الگوریتمی دو هدفه با استفاده همزمان از نتایج بهینه‌سازی تک هدفه PSO برای یکی از قیودNSGA-Ⅱ بر اساس عدم قطعیت تقاضا با روش کمینه‌ی بیشینه و رویکرد استوار ارائه می‌دهد. دو هدف مدنظر عبارتند از: کمینه کردن بیشترین خسارت محتمل ناشی از حجم آب آلوده مصرفی و کمینه کردن هزینه تهیه و نصب حسگر. این مطالعه با در نظر گرفتن سه سناریو (S1، S2 و S3) به منظور تزریق آرسنیک با غلظت‌های 50، 100 و 150 میلی‌گرم بر لیتر از گره‌های مختلف و در گام‌های زمانی متفاوت بررسی می‌شود. نتایج مدل توسعه داده شده بر روی یک شبکه مرجع نشان می‌دهد که در هر یک از سناریوهای S1، S2 و S3 نصب تنها یک حسگر خسارت را به ترتیب 75، 70 و 61 درصد کاهش می‌دهد. همچنین، ورود آلودگی از ساعت‌های 19 و 20 منجر به تولید سناریوی بحرانی می‌شود. با وجود اینکه جانمایی حسگرها به غلظت آلاینده تزریق شده وابسته است، با این حال محل‌هایی مانند گره‌های 5، 15، 17 و 19 در جواب‌های تولید شده بیشترین تکرار را داشتند. شکل‌گیری مناسب جبهه پارتو در هر سه سناریو نشان داد که رویکرد رباست، با حداقل انحراف تابع هدف از مقدار بهینه خود به ازای تمام پارامترهای دارای عدم قطعیت جواب‌های موجهی تولید می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Quality Detection Sensors Location in Water Distribution Networks for Uncertain Water Demand Conditions

نویسندگان [English]

  • Hamideh Jafri 1
  • Taher Rajaee 2
1 Department of Civil Engineering, University of Qom, Qom, Iran,
2 Department of civil Faculty of Engineering University of Qom Qom Iran
چکیده [English]

Accidental or intentional entry of pollution into water distribution networks as one of the vital life lines of any country, causes extensive damage in society. Early detection and warning of contaminant injection in the water distribution network is of significant importance. In order to optimize the location of quality sensors, this study presents a new algorithm based on uncertainty in pollution entry location and time and water demands. For the first time, this study presents a bi-objective algorithm using the results of single-objective PSO optimization simultaneously for one of the NSGA-Ⅱ constraints based on water requirement uncertainty by the Minimax method and robust approach. The two goals are to minimize the maximum possible damage caused by the contaminated water consumed and to minimize the cost of sensor preparation and installation. In this study, considering three scenarios (S1, S2 and S3), arsenic injection with concentrations of 50, 100 and 150 mg / l from different nodes and in different time steps are investigated. The results of the developed model on a reference network reveal that in each of the three injection rate scenarios S1, S2 and S3, the installation of only one sensor reduces the damage by 75, 70 and 61%, respectively. Also, the entry of pollution from 19:00 and 20:00 leads to a critical scenario. Although, the location of the sensors depends on the concentration of the injected contaminant, the highest repeated location in the generated responses was found in nodes 5, 17, and 19. The proper formation of the Pareto front in all three scenarios of injection rate showed that for all parameters with uncertainty, the robust approach generates justified responses with a minimum deviation of the objective function from its optimal value.

کلیدواژه‌ها [English]

  • PSO
  • NSGAII
  • Uncertainty
  • Quality Sensor
  • Contaminated water consumed
تابش، م. 1395. مدل‌سازی پیشرفته شبکه‌های توزیع آب، انتشارات دانشگاه تهران.
راهبردی، م.ب.ر.و.ن. 1392. نشریه 3-117، ضوابط طراحی سامانه­های انتقال و توزیع آب شهری و روستایی، بازنگری اول. 1392.
شفیعی، ش.، ع. نصیریان. و ح. نصیرپور. 1399. بهینه­سازی موقعیت حسگرهای کیفی در شبکه­های توزیع آب به منظور شناسایی ورود همزمان آلودگی از چند گره، نشریه مهندسی آبیاری و آب ایران، 11(41): 304-286.
Afshar, A. and Khombi, S.M. 2015. Multi-objective optimization of sensor placement in water distribution networks; dual use benefit approach. International Journal of Optimization in Civil Engineering. 5(3): 315–331.
Bazargan-Lari, M. R. 2014. An evidential reasoning approach to optimal monitoring of drinking water distribution systems for detecting deliberate contamination events. Journal of Cleaner Production. 78: 1-14.
Berry, J.W., Fleischer, L., Hart, W. E., Phillips, C. E. and J. P. Watson. 2005. Sensor Placement in Municipal Water Networks. Journal of Water Resources Planning and Management. 131 (3): 237-243.
Berry, J., Hart, W. E., Phillips, C. A., Uber, J. G. and P. Watson, J. 2006. Sensor placement in municipal water networks with temporal integer programming models. Journal of Water Resources Planning and Management. 132 (4): 218-224.
Chang, N.-B., Pongsanone, N.P. and Ernest, A. 2012. A rule-based decision support system for sensor deployment in small drinking water networks. Journal of Cleaner Production. 29–30 (0): 28-37.
Clerc, M. and kennedy, J. 2002. The Particle Swarm-Explosion Stability, and Convergence in a Multidimensional Complex Space. IEE Transactions on Evolutionary Computation,.58-73.
Comboul, M. and Ghanem, R. 2013. Value of Information in the Design of Resilient Water Distribution Sensor Networks. Journal of Water Resources Planning and Management. 139: 449-455.
Cozzolino, L., Mucherino, C., Pianese, D. and Pirozzi, F. 2006. Positioning, within water distribution networks, of monitoring stationsn aiming at an early detection of intentional contamination. Civ Eng Environ Syst. 23(3): 161-174, DOI: 10.1080/10286600600789359.
Deb, K. and Jain, H. 2014. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Transactions on Evolutionary Computation. 18: 577–601.
Diao, K., and Rauch, W. 2013. Controllability analysis as a pre-selection method for sensor placement in water distribution systems. Water Research. 47 (16): 6097-6108.
Ghimire, S. R. and Barkdoll, B. D. 2006. A Heuristic Method for Water Quality Sensor Location in A Municipal Water Distribution System: Mass-Released Based Approach, paper presented at 8th Water Distribution Systems Analysis Symposium, Cincinnati.
Jafari, H., Rjaee, T. and Nazif, S. 2020. An investigation of the possible scenarios for the optimal locating of quality sensors in the water distribution networks with uncertain contamination. 18 (5): 704–721.
Janke, R., Murray, R., Haxton, T.M., Taxon, T., Bahadur, R., Samuels, W., Berry, J., Boman, E., Hart, W., Riesen, L. and Uber, J. 2017. Threat ensemble vulnerability assessment-sensor placement optimization tool (TEVA-SPOT) graphical user interface user’s manual. 147. EPA/600/R-08.
Kennedy, J. and Eberhart, R. C. 1995. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks. 4:1942-1948.
Kim J. H., Kim, T. G. and Yoon, Y. N. 1994. A study on the pipe network system design using nonlinear programming. Journal of Korea Water Resources Association. 27 (4): 59-67.
Khorshidi, M. S. Nikoo, M. R. and Sadegh, M. 2018. Optmal and objective placement of sensors in water distribution systems using information theory. Water Research. 143: 218-228.
Khorshidi, M.S., Nikoo, M.R., Ebrahimi, E. and Sadegh, M. 2019. A robust decision support leader follower framework for design of contamination warning system in water distribution network. 214: 666-673.
Lee, B. H. and Deininger, R. A. 1992. Optimal locations of monitoring stations in water distribution system. Journal of Environmental Engineering. 118 (1): 4-16.
Liu, S. and Auckenthaler, P. 2013. Optimal sensor placement for event detection and source identification in water distribution networks. Journal of Water Supply: Research and Technology-Aqua. 63 (1): 51-57.
Mukherjee, R., Diwekar, U. M. and Vaseastha, A. 2017. Optimal Sensor Placement with Mitigation Strategy for Water Network Systems under Uncertainty. Computers and Chemical Engineering. 103: 91-102.
Naserizade, S. S., Nikoo, M. R. and Montaseri, H. 2018. A risk-based multi-objective model for optimal placement of sensors in water distribution system. ‏Journal of Hydrology. 557: 147-159
Ohar, Z., Lahav, O. and Ostfeld, A. 2015. Optimal sensor placement for detecting organophosphate intrusions into water distribution syste. Water Research. 73: 193-203
Ostfeld, A. and Salomons, E. 2004. Optimal layout of early warning detection stations for water distribution systems security. Journal of Water Resources Planning and Management.130 (5): 377-385
Propato, M., and Piller, O. 2006, Battle of the Water Sensor Network, paper presented at 8th Water Distribution Systems Analysis Symposium, Cincinnati.
Rahmati, S.H.A., Zandieh, M. and Yazdani, M. 2013. Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem. International Journal of Advanced Manufacturing Technology. 64 (5): 915-932.
Rathi, S. Gupta, R., Kamble, S. and Sargaonkar, A. 2016. Risk Based Analysis for Contamination Event Selection and Optimal Sensor Placement for Intermittent Water Distribution Network Security. Water Resources Management. 30 (8): 2671-2685.
Rossman, L. A. 2000. EPANET 2 user’s manual. U.S. Environmental Protection Agency, Cincinnati, U.S.A
Schwartz, R. Lahav, O. and Ostfeld, A. 2014. Optimal sensor placement in water distribution networks for injection of chlorpyrifos. In: World Environmental and Water Resources Congress. Portland, OR, USA. 485-494.
Shastri, Y. and Diwekar, U. 2006. Sensor Placement in Water Networks: A Stochastic Programming Approach. Journal of Water Resources Planning and Management. 132 (3): 192-203.
Shen, H. and McBean, E. 2011. Diminishing marginal returns for sensor networks in a water distribution system. Journal of Water Supply: Research and Technology-Aqua. 60 (5): 286-293.
Tinelli, S., Creaco, E. and Ciaponi, C. 2017. Sampling Significant Contamination 727 Events for Optimal Sensor Placement in Water Distribution Systems. Journal of Water Resources Planning and Management. 143(9): 04017058.
Weickgenannt, M., Kapelan, Z., Blokker, M. and Savic, D. A. 2010. Risk based sensor placement for contaminant detection in water distribution systems. Journal of Water Resources Planning and Management. 136(6): 629-636, DOI: 10.1061/ (ASCE) WR.1943-5452.0000073.
Yang, S. and Li, C. 2010. A Clustering Particle Swarm Optimizer for Locating and Tracking Multiple Optima in Dynamic Environments. IEEE Transactions on Evolutionary Computation. 14 (6): 959-974.