تبخیر از دریاچه‌ها و مخازن سدها: برآوردهای بیلان انرژی، ارزیابی روش‌های تابش دما و روابط ترکیبی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 استاد گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 استادیار گروه مهندسی آب، دانشگاه گیلان، رشت، ایران

چکیده

برنامه‌ریزی، مدیریت و بهره‌برداری از ذخایر سدها به‌ویژه در مناطق خشک و نیمه خشک نیاز به برآوردهای مطمئن از تبخیر دارد. این وضعیت در شرایطی مانند سد دوستی که منبع استراتژیک تأمین بخش وسیعی از آب شرب مشهد نیز می‌باشد، اهمیتی دوچندان می‌یابد. در این تحقیق تلاش شده است با استفاده از بیلان انرژی دریاچه سد دوستی، میزان تبخیر برآورد گردیده و در عین حال برخی روش‌های دمایی و ترکیبی، مورد ارزیابی قرار گیرند. به این منظور 10 روش معتبر برآورد تبخیر در قالب گروه‌هایی مبتنی بر بیلان انرژی، تشت، تابش ـ دما و روش‌های ترکیبی مورد استفاده قرار گرفت. با توجه به کمبود داده‌های مورد نیاز، به‌ویژه برای بیلان انرژی و برخی روش‌های منتخب، اندازه‌گیری‌های میدانی از دریاچه سد دوستی برای دوره زمانی یک‌ساله،انجام گردید. نتایج بیلان انرژی به عنوان روش استاندارد، میزان تبخیر سالانه را درحدود 9/69 میلیون مترمکعب از دریاچه سد دوستی برآورد نمود. سایر روش‌ها مقدار تبخیر سالانه رادر حدود 39 تا 99 میلیون مترمکعب برآورد نموده‌اند. نتایج ارزیابی شدت تبخیر حاصل از روش‌های مورد استفاده در مقیاس زمانی روزانه و ماهانه، حاکی از ضعف برخی معادلات ترکیبی و نیز داده‌های مربوط به تشت می‌باشد. از طرفی حصول نتایج نسبتاً دقیق از روش‌هایی که صرفاً تکیه بر داده‌های دمایی و یا تابشی (جنسن ـ هیز و مککینک) دارند از نتایج قابل توجه این تحقیق است؛ دقت این روش‌ها با توجه به کمبود شدید داده‌های مورد نیاز، قابل اعتماد و در دسترس در اغلب دریاچه‌ها و مخازن سدها می‌تواند در بهبود برنامه‌ریزی‌ها و مدیریت این سامانه‌های آبی، راه‌حلی نوید بخش باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Lake and Reservoir Evaporation: Energy Balance Estimations, Evaluation of Combination and Radiation− Temperature Methods

نویسندگان [English]

  • Meysam Majidi 1
  • Amin Alizadeh 2
  • Ali Reza FaridHosseini 3
  • Majid Vazifedoust 4
1 Ph. D student, Water Engineering Dept., Ferdowsi University of Mashhad., Mashhad., Iran
2 Professor, Water Engineering Dept., Ferdowsi University of Mashhad., Mashhad., Iran
3 Assistant professor,Water Engineering Dept., Ferdowsi University of Mashhad., Mashhad., Iran
4 Assistant professor,Water Engineering Dept., University of Guilan., Rasht., Iran
چکیده [English]

Reservoir operations and development of new storage and water accounting strategies require more accurate evaporation estimates especially for Doosti dam reservoir as most important drinking water resource of Mashhad in arid conditions. In this study an attempt has been made to estimate evaporation from Doosti dam reservoir using combination and radiation−temperature methods based on energy balance method. For this reason, 10 evaporation estimation methods in some categories as energy balance, pan, radiation− temperature and combination group have been used. According to limited data especially for energy balance method, the field measurements of the dam were conducted for one year.The lake energy balance yields annual evaporation of 69.9 mcm. Annual evaporation estimations resulted from other methods ranged between 39 to 99 mcm. According to the assessments, evaporation values from Jensen−Haise, Makkink, Penman and deBruin methods compared most favorably with energy balance method determined values. Methods that rely only on measurement of air temperature, or air temperature and sunshine data (Jensen−Haise and Makkink), because of their simplicity, least sensitivity and high accuracy, were relatively cost−effective options for measuring evaporation at this reservoir, outperforming some methods that require measurement of a greater number of variables. 

کلیدواژه‌ها [English]

  • : Combination methods
  • Doosti dam reservoir
  • Energy balance
  • Lake evaporation
  • Radiation -temperature
حسنی،ا.، تجریشی،م و ابریشم‌چی، ا.،  1390. تصحیح روش بیلان انرژی تاریخی مخزن سد ساوه (الغدیر) با استفاده از اندازه‌گیری‌های میدانی. مهندسی عمران شریف. شماره 1. 127 ـ 115.
دانش‌کار آراسته،پ.، تجریشی،م.، میرلطیفی،م و ثقفیان.ب.  1384. مدل آماری برآورد تبخیر از سطح مخزن چاه‌نیمه سیستان به روش بیلان حجمی. پژوهش و سازندگی در منابع طبیعی. شماره 68، 14ـ 2.
زارع ابیانه،ح.، بیات ورکشی،م.، سبزی‌پرور،ع.ا.، معروفی،ص و قاسمی،ع. 1389. ارزیابی روش‌های مختلف برآورد تبخیر تعرق گیاه مرجع و پهنه‌بندی آن در ایران. پژوهش‌های جغرافیای طبیعی. شماره 74، 110 ـ 95.
سعادت‌خواه،ن.، سارنگ،س.ا.، تجریشی،م و ابریشم‌چی،ا. 1380. برآورد تبخیر از مخازن چاه نیمه. آب و فاضلاب. شماره 40.
شریفان،ح.، قهرمان،ب.، علیزاده،ا و میرلطیفی،م.  1385. مقایسه روش‌های مختلف برآورد تبخیر ـ تعرق مرجع (ترکیبی و دمایی) با روش استاندارد و بررسی اثرات خشکی هوا بر آن. مجله علوم کشاورزی و منابع طبیعی. سال سیزدهم. شماره 1.
علیزاده، ا.، ایزدی، ع.، داوری، ک.، ضیایی، ع. ن.، اخوان، س.، و ز.، حمیدی. 1392. برآورد تبخیر ـ تعرق واقعی در مقیاس سال ـ حوضه با استفاده از SWAT. نشریه آبیاری و زهکشی ایران. شماره 2، 258 ـ 243.
علیزاده،ا.، خانجانی،م.ج.، تراز،ح و رهنورد،م.ر. 1385. بررسی اثرات اصلاح داده‌های دما بر دقت محاسبات تبخیر ـ تعرق و مقایسه‌ی آن با نتایج به‌دست آمده از لایسی‌متر وزنی. مجله جغرافیا و توسعه‌ی ناحیه‌ای. شماره 6، 99 ـ 91.
مجیدی،م.، علیزاده،ا و کافی،م.  1390. برآورد میزان تعرق گیاه با استفاده از اندازه‌گیری دمای برگ. نشریه آبیاری و زهکشی ایران. جلد 5، شماره 1، 157 ـ 145.
مجیدی،م.، و ا.، علیزاده. 1390. بررسی تأثیر داده‌های هواشناسی غیر‌موجود و روش‌های تخمین آن‌ها در دقت برآورد تبخیر- تعرق مرجع و رتبه‌بندی معادلات در شرایط اقلیمی مختلف(مطالعه موردی استان‌های خراسان). نشریه آب و خاک. جلد 25. شماره 6.
Anderson,E.R. 1954. Energy−budget studies. In: Water Loss Investigations: Lake Hefner Studies. U.S. Geological Survey Professional Paper (269), 71−119.
Assouline,S and Mahrer,Y. 1993. Evaporation from Lake Kinneret: 1 Eddy correlation system measurements and energy budget estimates. Water Resour. Res. 29, 901−910.
Blaney,H.F and Criddle,W.D. 1950. Determining Water Requirements in Irrigated Areas fromClimatological Irrigation Data. Technical Paper No. 96, US Department of Agriculture, Soil Conservation Service, Washington, D.C., 48 pp.
Bowen,I.S. 1926. The ratio of heat losses by conduction and by evaporation from any water surface. Physical Review. 27, 779–787.
Brutsaert,W. 1982. Evaporation Into the Atmosphere: Theory, History and Applications. D. Reidel Publishing Company, Dordrecht.
Brutsaert,W and Stricker,H. 1979. An Advection−Aridity Approach to Estimate Actual Regional Evapotranspiration. Water Resour. Res. 15 (2), 443–450.
Brutsaert,W and Yu,S.L. 1968. Mass transfer aspects of pan evaporation. J. Appl. Meteor. 7, 563−566.
Cogley,J.G. 1979. The albedo of water as a function of latitude. Monthly Weather Rev., 107, 775−781.
Dalton,J. 1802. Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion ofgases by heat. Mem. Manchester Liter. and Phil. Soc. 5–11, 535–602.
De Bruin,H.A.R. 1978. A simple model for shallow lake evaporation. J. Appl. Meteor. 17, 1132–1134.
De Bruin,H.A.R and Keijman,J.Q. 1979. The Priestley −Taylor evaporation model applied to a large shallow lake in the Netherlands. J. Appl. Meteor. 18, 898–903.
De Bruin, H.A.R and Stricker, J.N.M., 2000. Evaporation of grass under non–restricted soil moisture conditions, Hydrological Sciences Journal, 45(3), 391–406.
Dos Reis,R.J and Dias,N.L. 1998. Multi−season lake evaporation: energy−budget estimates and CRLE model assessment with limited meteorological observations. J. Hydrol. 208, 135–147.
Gallego−Elvira, B., Baille, A., Mart´ın−G´orriz, B., Mart´ınez−A´ lvarez, V. 2010. Energy balance and evaporation loss of an agricultural reservoir in a semi−arid climate (south−eastern Spain), Hydrol. Process., 24, 758–766
Hamon,W.R. 1961. Estimating potential evapotranspiration.,Hyraul.D iv. Am. Soc. Civ. Eng., 87(HY3), 107–120.
Hamon,W.R. 1963. Computation of direct runoff amounts from storm rainfall. Int. Assoc. Sci. Hydrol. Publ., 63, 52–62.
Hoy,R.D and Stephens,S.K. 1977. Field study of evaporation, Research Project 6815. Canberra, A.C.T., Australian Water Resources Council, Department of Natural Resources.
Jensen,M.E and Haise,H.R. 1963. Estimating evapotranspiration from solar radiation. J. Irrig. Drainage Div. ASCE. 89, 15–41.
Lapworth,C.F. 1965 Evaporation from a reservoir near London. Journal of the Institution of Water Engineers, 19, 163-181.
Lenters,J.D., Kratz,T.K and Bowser,C.J. 2005. Effects of climate variability on lake evaporation: results from a long−term energy budget study of Sparkling Lake, northern Wisconsin (USA). J. Hydrol. 308, 168–195.
Linacre,E.T. 1993. Data−sparse estimation of lake evaporation, using a simplified Penman equation. Agric. Forest Meteor. 64, 237–256.
Makkink,G.F. 1957. Ekzameno de la formulo de Penman. Netherlands J. Agric. Sci. 5, 290–305.
McJannet,D.L., Webster,I.T and Cook,F.J. 2012. An area−dependent wind function for estimating open water evaporation using landbased meteorological data, Environ. Modell. Softw. 31, 76–83.
Papadakis,J. 1961. Climatic tables for the world. Buenos Aires, (Original not seen, cited in Grassi, 1964).
Penman,H.L. 1948. Natural evaporation from open water, bare soil and grass. Proc. Royal Soc. A193, 120−145.
Penman,H.L. 1963. Vegetation and Hydrology. Tech. Comm. No. 53, Commonwealth Bureau of Soils, Harpenden, England, 125 pp.
Priestley,C.H.B and Taylor,R.J. 1972. On the assessment of the surface heat flux and evaporation using large−scale parameters. Monthly Weather Rev. 100, 81–92.
Rosenberry, D.O., Winter, T.C., Buso, D.C., Likens, G.E. 2007. Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA, J. Hydrol. 340, 149–166.Sene,K.J., Gash,J.H and McNeil,D.D. 1991. Evaporation from a tropical lake: comparison of theory with direct measurements. J. Hydrol. 127, 193–217.
Simon,E and  Mero,F. 1985. A simplified procedure for the evaluation of the Lake Kinneret evaporation. J. Hydrol. 78, 291–304.
Singh,V.P and Xu,C.Y. 1997. Evaluation and generalization of 13 mass–transfer equations for determining free water evaporation. Hydrological Processes, 11, 311– 323.
Stannard,D.I and Rosenberry,D.O. 1991. A comparison of short−term measurements of lake evaporation using eddy correlation and energy budget methods. J. Hydrol. 122, 15–22.
Stauffer,R.E. 1991. Testing lake energy budget models under varying atmospheric stability conditions. J. Hydrol. 128, 115–135.
Stephens,J.C and Stewart,E.H. 1963. A comparison of procedures for computing evaporation and evapotranspiration. Publication 62, international association of scientific hydrology. International Union of Geodynamics and Geophysics, Berkeley, CA, pp 123–133
Stewart,R.B and Rouse,W.R. 1976. A simple method for determining the evaporation from shallow lakes and ponds. Water Resour. Res. 12, 623–628.
Stewart,R.B and Ruose,W.R. 1977. Substantiation of the priestley−taylor parameter alpha = 1.26 for potential evaporation in high latitudes. J. Appl. Meteor. 16, 649–650.
Sturrock,A.M., Winter,T.C and Rosenberry,D.O. 1992. Energy budget evaporation from Williams Lake − a closed lake in North Central Minnesota. Water Resour. Res. 28, 1605–1617.
Torres,E.A and Calera,A. 2010. Bare soil evaporation under high evaporation demand: a proposed modification to the FAO–56 model. Hydrological Sciences Journal. 55(3), 303–315.
Winter, T.C., Buso, D.C., Rosenberry, D.O., Likens, G.E., Sturrock, A.M.J., Mau, D.P. 2003. Evaporation determined by the energy budget method for Mirror Lake, New Hampshire. Limnology and Oceanography, 48 (3), 995–1009.
Winter,T.C., Rosenberry,D.O and Sturrock,A.M. 1995. Evaluation of 11 equations for determining evaporation for a small lake in the north central United States. Water Resour. Res. 31 (4), 983–993.
Winter,T.C. 1981 Uncertainties in estimating the water balance of lakes. Water Resources Bulletin, 17 , 82-115.
Xu,C.Y and Singh,V.P. 2000. Evaluation and generalization of radiation–based methods for calculating evaporation. Hydrological Processes. 14, 339–349.
Krabbenhoft,D.P., Anderson,M.P., Bowser,C.J. 1992. Estimating groundwater exchange with lakes. 1. The stable isotope mass balance method and estimating groundwater exchange with lakes. 2. Calibration of a 3-dimensional, solute transport model to a stable isotope plume-reply. Water Resources Research 28 (6), 1751–1753.