کاربرد فیلتر کالمن غیر‌خطی توسعه‌یافته در بهبود نتایج مدل‌سازی جریان آب زیرزمینی در آبخوان آزاد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی عمران- مهندسی و مدیریت منابع آب، دانشگاه بیرجند

2 ا ستادیار گروه عمران، دانشگاه بیرجند

3 دانشیار گروه مهندسی عمران، دانشکده مهندسی، دانشگاه بیرجند، بیرجند، ایران

4 دانشیار گروه عمران، دانشگاه فردوسی مشهد

چکیده

نرم­افزار مدل­سازی آب زیرزمینی جی.ام.اس4 با استفاده از کد مودفلو5 بر مبنای تفاضل محدود به حل معادلات حاکم بر آب­های زیرزمینی می­پردازد. با مقایسه نتایج سطح آب زیرزمینی محاسباتی با مقادیر مشاهداتی می­توان به وجود خطا در نتایج نرم­افزار پی برد. از روش­های کاهش خطای مدل­سازی استفاده از الگوریتم فیلتر کالمن6 می­باشد. در این مطالعه از روش فیلتر کالمن غیرخطی توسعه یافته7 به­منظور بهبود نتایج مدل­سازی آبخوان بیرجند در استان خراسان­جنوبی استفاده شد. نتایج نشان داد که استفاده از فیلتر کالمن غیر­خطی توسعه یافته در بهبود پیش­بینی سطح آب زیرزمینی آبخوان رضایت­بخش بود، به طوری­که خطای میانگین و خطای مطلق میانگین و خطای جذر میانگین مربعات نتایج مدل­سازی به­ترتیب از 246/0-، 125/1 و 341/1 متر با تاثیر فیلتر کالمن توسعه یافته به 007/0-، 015/0 و 019/0متر کاهش یافت. همچنین با بررسی نتایج دو روش فیلتر کالمن غیر­خطی توسعه یافته و فیلتر کالمن غیرخطی مشخص شد فیلتر کالمن غیر­خطی توسعه یافته گزینه بسیار مناسب­تری در کاهش خطای مدل­سازی در این تحقیق می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The usage of extended non-linear filter kalman in improvement of groundwater simulation results in unconfined aquifer

نویسندگان [English]

  • sara Sarikhani 1
  • mahdi Naseri 2
  • Abolfazl Akbarpour 3
  • mohammad bagher sharifi 4
1 M.Sc. of civil-engineering and water resources management., University of Birjand
2 Assistant Professor, Civil Engineering Department, Faculty of Engineering
3 Associate Professor, Department of Civil Engineering, University of Birjand., Birjand., Iran
4 Associate Professor, Civil Engineering Department, Faculty of Engineering,Ferdowsi University of Mashhad
چکیده [English]

GMS, is the software that simulate groundwater flow, with using ModFlow based on finite difference method. With comparing the acquired result from GMS and observation data, the existence of error is clear and obvious. One of the methods that decrease simulation error is the usage of filter kalman algorithm. In this study, extended non-linear filter kalman was used in order to improve the simulation results in Birjand unconfined aquifer in southern Khorasan province. The results showed that using this algorithm revealed satisfactory results in prediction of groundwater head. As the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) are -0.246, 1.125 and 1.341 meter respectively. With influencing extended filter kalman on results these errors decrease to -0.007, 0.015 and 0.019 meter. Also with investigation the results of extended non-linear filter kalman and non-linear filter kalman, it was found extended non-linear filter kalman is better choice for reducing simulation errors.

کلیدواژه‌ها [English]

  • MODFLOW
  • Kalman Filter
  • unconfined aquifer
  • Unsteady Conditions
Andrews Angus,P and  Grewal  Mohinder,S. 1993. Kalman Filtering: Theory and Practice using Matlab. p:1-381
Behmanesh,J and  Bateni,M.M. 2015. Covariance correction for estimating groundwater level using deterministc ensemble kalman filter. Journal of Fundamental and Applied Sciences. 7.1:1-13 .
Bishop,G and  Welch,G. 2006. An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill. Department of Computer Science. 1-160.
Bras,R.L. 1978. Sampling network design in hydrology and water quality sampling.A review of linear estimation theory  in Applications  of  Kalman filter to hydrology. hydraulics and water resources. Proceedings of AGU Chapman Conference. May 22-24. Pittsburgh.  155-200.
Brouwer,G.K. 1983. Reduction of a groundwater level network. Proceedings and Information. No. 31 of the Committee for Hydrological Research TNO. The Hague. The Netherlands. 101-117.
Eigbe,U., Beck,M.B., Wheater,H.S., Hirano,F. 1998. .Kalman filtering in groundwater flow modelling: problems and prospects. Stochastic Hydrology and Hydraulics. 12.1: 15-32.
Ghochanian,E., Etebari,B., Akbarpour,A. 2013. Integrating groundwater management with WEAP and MODFLOW models (Case study: Birjand Plain, east of Iran). CUE conference. 1-11 .
Hamraz,B., Akbarpour,A., Pourreza Bilondi,M and  Sadeghi Tabas,S. 2015.On the assessment of ground water parameter uncertainty over an arid aquifer. Arabian Journal of Geosciences. 1-15 .
Kurtis,L., Doney,B. 2007. Leak Detection in Pipelines using the Extended Kalman Filter and the Extended Boundary Approach. University of Saskatchewan. Department of Mechanical Engineering. 38-53.
Leng,C.H and Yeh,H.D. 2003. Aquifer parameter identification using the extended Kalman filter. Water Resource Research. 39. 3.1062-1074.
O'Connell,P.E. 1980. Real-Time Hydrological Forecasting and Control. Institute of  Hydrology.Wallingford. UK. 195-240.
Sadeghi Tabas,S., Akbarpour,A., Pourreza Bilondi,M and  Samadi,S. 2016. Toward reliable calibration of aquifer hydrodynamic parameters:characterizing and optimization of grid groundwater system using swarm intelligence optimization algoritm. Arabian Journal of Geosciences.9.719:3-12 .
Wan,H., Anderson,M. 1995. Introduction to Groundwater Modeling. 87-88.
Wood,E.F and Szollosi-Nagy,A. 1978. An Adaptive Algorithm for Analyzing Short-Term Structural and Parameter Changes in Hydrologie Prediction Models. Water Resources Research. 14: 577-581.
Yeh,H.D and Haung,Y.C. 2004. parameter estimation for leaky aquifers using the etended kalman filter and considering model and data. 302.28-45.