اولویت‌بندی مدل‌های گردش عمومی مبتنی بر گزارش ششم تغییر اقلیم با استفاده از روش‌های تصمیم‌گیری چندمعیاره در حوضه آبریز نکارود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 استادیار گروه مهندسی آب و محیط زیست، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 استادیار گروه نقشه‌برداری، دانشکده مهندسی عمران، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

با توجه به تنوع و تعدد مدل‌های گردش عمومی جو (GCM) بهره‌گیری از تمامی آن‌ها در برآورد و تخمین پارامترهای اقلیمی میسر نیست. بی‌شک به‌کارگیری مدل مناسب در شبیه‌سازی‌های اقلیمی می‌تواند دقت و میزان قطعیت مدل‌سازی را بهبود بخشد. در مطالعه حاضر، مدل‌های ACCESS-ESM1-5، GFDL-CM4، IITM-ESM، INM-CM4-8، IPSL-CM6A-LR، MPI-ESM1-2 و MRI-ESM2-0 از مجموعه گزارش ششم تغییر اقلیم بر اساس شرایط اقلیمی حوضه رودخانه نکارود با به‌کارگیری رویکردهای تصمیم‌گیری چندمعیاره (MCDM) شامل روش‌های برنامه‌ریزی سازشی (CP)، تئوری بازی همکارانه (CGT)، تکنیک اولویت‌دهی بر اساس شباهت به راه‌حل ایده‌آل (TOPSIS) و تکنیک میانگین وزنی (WAT) ارزیابی شده و رتبه نهایی مدل‌ها بر مبنای روش تصمیم‌گیری گروهی (GDM) تعیین گردید. برای بررسی کیفیت بارش برآوردی این مدل‌ها در تناسب با بارش مشاهداتی، از شاخص‌های ضریب همبستگی (CC)، ریشه میانگین انحراف مربع نرمال شده (NRMSD)، میانگین انحراف نسبی مطلق (AARD)، انحراف میانگین نرمال شده مطلق (ANMBD) و امتیاز مهارت (SS) استفاده شد. اثر وزنی شاخص‌های ارزیابی در هر یک از رویکردهای رتبه‌بندی، با تکنیک آنتروپی مشخص شد. نتایج حاکی از آن است که شاخص CC، بالاترین اثرگذاری را در فرایند رتبه‌بندی مدل‌ها با اهمیت وزنی حدود 45 درصد دارد. در نهایت، مدل GFDL-CM4 با امتیاز خالص 18 در روش تصمیم‌گیری گروهی به‌عنوان مناسب‌ترین مدل برآوردکننده بارش در این حوضه آبریز شناخته شد.

کلیدواژه‌ها


عنوان مقاله [English]

Prioritization of the CMIP6 general circulation models using multi-criteria decision-making methods in the Nekarood watershed

نویسندگان [English]

  • Pooria Moghadas 1
  • Emad Mahjoobi 2
  • Saeid Gharechelou 3
1 M.Sc. Student in Water Resource Management and Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
2 Assistant Professor, Department of Water and Environmental Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
3 Assistant Professor, Department of Surveying, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Due to the diversity and multiplicity of atmospheric general circulation models (GCM), it is not possible to use all of them in the estimation of climatic parameters. Undoubtedly, using the right model in climate simulations can improve the accuracy and certainty of the modeling. In this study, ACCESS-ESM1-5, GFDL-CM4, IITM-ESM, INM-CM4-8, IPSL-CM6A-LR, MPI-ESM1-2 and MRI-ESM2-0 from the CMIP6 was evaluated in Nekarood river basin by applying multi-criteria decision-making (MCDM) approaches including compromise programming (CP), cooperative game theory (CGT), the technique for order of preference by similarity to ideal solution (TOPSIS) and weighted average technique (WAT). Then the final ranks were determined based on the group decision making method (GDM). To check the quality of the estimated rainfall of GCMs in accordance with the observed rainfall, correlation coefficient (CC), normalized root mean square deviation (NRMSD), average absolute relative deviation (AARD), absolute normalized mean bias deviation (ANMBD) and skill score (SS) were used. The weight effect of the evaluation indices in each of the MCDMs was determined by the entropy technique. The results indicate that the CC has the highest effect in the ranking process of GCMs with a weighted importance of about 45%. Finally, the GFDL-CM4 with a net strength of 18 in the group decision-making method was recognized as the most appropriate GCM, simulating precipitation for this watershed.

کلیدواژه‌ها [English]

  • Compromise Programming
  • Cooperative Game Theory
  • General Circulation Model
  • TOPSIS
  • Weighted Average Technique
Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H. and Younis, I. 2022. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research. 29(28): 42539-42559.
Anandhi, A. and Nanjundiah, R. S. 2015. Performance evaluation of AR4 climate models in simulating daily precipitation over the Indian region using skill scores. Theoretical and Applied Climatology. 119(3): 551–566.
Anil, S., Manikanta, V. and Pallakury, A. R. 2021. Unravelling the influence of subjectivity on ranking of CMIP6 based climate models: A case study. International Journal of Climatology. 41(13): 5998-6016.
Fordham, D. A., Wigley, T. M. and Brook, B. W. 2011. Multi‐model climate projections for biodiversity risk assessments. Ecological Applications. 21(8): 3317-3331.
Gouda, K. C., Nahak, S. and Goswami, P. 2018. Evaluation of a GCM in seasonal forecasting of extreme rainfall events over continental India. Weather and Climate Extremes. 21: 10–16.
Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N. and Son, M. 2018. Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets. Water. 10(12): 1793.
Kheireldin, K., Roushdi, M. and Aboelkhear, M. 2020. Selection of the optimum global circulation model that mimics the circumstances of Egypt. International Journal of Recent Technology an Engineering. 9: 784-793.
Li, Z., Ye, L., Zhao, Y., Song, X., Teng, J. and Jin, J. 2016. Short-term wind power prediction based on extreme learning machine with error correction. Protection and Control of Modern Power Systems, 1(1): 1-8.
Nashwan, M. S. and Shahid, S. 2020. A novel framework for selecting general circulation models based on the spatial patterns of climate. International Journal of Climatology. 40(10): 4422-4443.
Neupane, S., Shrestha, S., Ghimire, U., Mohanasundaram, S. and Ninsawat, S. 2021. Evaluation of the CORDEX regional climate models (RCMs) for simulating climate extremes in the Asian cities. Science of The Total Environment. 797: 149137.
Raju, K. S. and Kumar, D. N. 2014. Ranking of global climate models for India using multicriterion analysis. Climate Research, 60(2): 103-117.
Raju, K. S., Sonali, P. and Nagesh Kumar, D. 2017. Ranking of CMIP5-based global climate models for India using compromise programming. Theoretical and applied climatology. 128(3): 563-574.
Raju, K. S., Nagesh Kumar, D., Srinivasa Raju, K. and Kumar, D. N. 2018. Selection of global climate models. Impact of Climate Change on Water Resources: With Modeling Techniques and Case Studies. 27-75.
Raju, K. S. and Kumar, D. N. 2020. Review of approaches for selection and ensembling of GCMs. Journal of Water and Climate Change. 11(3): 577-599.
Refaey, M. A., MHassan, H. M. and Aboelkhear, M. 2019. Multi Criterion Decision Making Techniques for Ranking Regional climate models Over Wadi El-Natrun Catchment. Australian Journal of Basic and Applied Sciences. 13(5): 85-96.
Rom, W. N. and Pinkerton, K. E. 2021. Introduction: Consequences of Global Warming to Planetary and Human Health. Climate Change and Global Public Health, 1-33.
Sharma, A. and Kale, G. D. 2022. Ranking of general circulation models for Surat City by using a hybrid approach. Water Practice & Technology. 17(10): 2186-2198.
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., and Miller, H. L. 2007. IPCC fourth assessment report: The physical science basis.
Sreelatha, K. and Anand Raj, P. 2021. Ranking of CMIP5-based global climate models using standard performance metrics for Telangana region in the southern part of India. ISH Journal of Hydraulic Engineering. 27(1): 556-565.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M. M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M. 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Computational Geometry. 18(2): 95-123.
Vassoney, E., Mammoliti Mochet, A., Desiderio, E., Negro, G., Pilloni, M. G. and Comoglio, C. 2021. Comparing multi-criteria decision-making methods for the assessment of flow release scenarios from small hydropower plants in the alpine area. Frontiers in Environmental Science. 9: 635100