بررسی آزمایشگاهی تأثیر نواحی نگهداشت آبشکنهای متخلخل بر شبیه سازی عددی انتقال آلودگی در روخانه ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری؛

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

3 گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری.

چکیده

یکی از اهداف جانبی سازه‌های هیدرولیکی میتواند تأمین سلامت و پایداری محیط‌زیست نیز باشد. آلودگی آب و کاهش کیفیت آن تهدیدی جدی برای سلامتی زمین بوده و رودخانه‌ها را به کانالی برای فاضلاب‌های صنعتی آلوده تبدیل خواهد کرد. یکی از روش‌های مدیریت آلودگی و افزایش توان خود پالایی رودخانه‌ها افزایش مدت زمان‌ ماند آب در طول مسیر می‌باشد که با احداث سازه‌هایی همچون آبشکنهای متخلخل در مسیر جریان می‌توان به آن دست پیدا کرد. در این پژوهش به بررسی آزمایشگاهی انتقال آلودگی با استفاده از ماده ردیاب NaCl در کانال آزمایشگاهی با مصالح بستر به قطر متوسط (D50) 85/11 میلیمتر، ضخامت 12 سانتی‌متر و طول 12 متر در تعداد مختلف آبشکن متخلخل ریزدانه یا درشت دانه از 1 تا 4 عدد پرداخته شد. برای شبیه سازی عددی روشهای حل تحلیلی معادله انتقال-پراکندگی (ADE)، مدل عددی OTIS و همچنین حل مدل نگهداشت موقت (TSM) با استفاده از بهینه سازی روش گشتاورگیری زمانی استفاده شدند. نتایج آزمایشگاهی نشان دادند که مصالح ریزدانه در بدنه آبشکنهای متخلخل در مقایسه با مصالح درشت دانه موجب کاهش غلظت اوج آلودگی (Cmax) میشود. بررسی نتایج نشان داد که وجود آبشکنهای متخلخل در مسیر جریان با افزایش تبادلات هایپریک موجب افزایش مدت زمان ماند ماده آلاینده در مسیر جریان شده بنابراین معادله انتقال-پراکندگی (ADE) به علت عدم در نظر گرفتن تبادلات نواحی نگهداشت دارای دقت پایین با ضریب همبستگی (R2) 71/0 تا 83/0 در شبیه‌سازی‌ها بوده است. از سوی دیگر، مدل OTIS که مبتنی بر مدل نگهداشت موقت (TSM) بوده با در نظر گرفتن نقش نواحی متخلخل آبشکنها در ذخیره موقت املاح دارای دقت بالا با ضریب همبستگی (R2) 91/0 تا 98/0 بوده است. ضرایب تخمینی پراکندگی طولی (Dx) و تبادل ناحیه نگهداشت (α) به روش گشتاورگیری زمانی در اغلب شبیه سازی ها از تخمین‌های مدل OTIS کمتر ارزیابی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

Laboratory Investigation of the Effect of Gabion Spur Dikes Storage Zones on the Numerical Simulation of Pollution Transport in Rivers

نویسندگان [English]

  • Fariba Gholami 1
  • alireza emadi 2
  • Mohammad Mirnaseri 3
1 Water Engineering Department, agricultural engineering faculty, sari agricultural sciences and natural resources university.
2 Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
3 Water engineering department, Agricultural engineering Faculty, Sari University.
چکیده [English]

Ensuring the health and sustainability of the environment is one of the secondary goals of hydraulic structures. Water pollution and the reduction of its quality are serious threats to the health of the earth and will turn rivers into channels for polluted industrial wastewater. Increasing the residence time of flow in rivers by constructing hydraulic structures such as gabion spur dikes can increase the self-purification capacity. In this research, a laboratory investigation of pollution transport using NaCl tracer material in a laboratory channel with a sediment bed with a medium diameter (D50) of 11.85 mm, thickness of 12 cm, and length of 12 meters in a different number of fine-grained or coarse-grained gabion spur dikes from 1 to 4 were performed. Analytical solutions of Advection-Dispersion equation (ADE), OTIS model, and solution of Transient Storage Model (TSM) were used for numerical simulation. Laboratory results showed that gabion spur dikes with fine-grained materials reduce the peak concentration of pollution (Cmax) compared to coarse-grained materials. The results showed that the gabion spur dikes in the flow path increase the residence time of the pollutant by increasing hyporheic exchanges. The advection-dispersion equation (ADE) has low accuracy in the simulations due to the lack of attention to the role of the storage zone exchanges, with a determination coefficient (R2) of 0.71 to 0.83. On the other hand, the OTIS model, which is based on the transient storage model (TSM), considering the role of the porous zones of spur dikes in the transient storage of solute, has high accuracy with a determination coefficient (R2) of 0.91 to 0.98. The estimated coefficients of longitudinal dispersion (Dx) and storage zone exchange (α) by the temporal moment analysis were evaluated lower than the estimates of OTIS model in most of the simulations.

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • Hyporheic Exchanges
  • Self-Purification
  • Tracer
  • Advection-dispersion Equation
آژدان، ی.، عمادی، ع.ر.، چابک­پور، ج. و دانش­فراز، ر. 1388. برآورد پارامترهای مدل ذخیره موقت برای شبیه‌سازی انتقال آلودگی در رودخانه‌های بستر سنگریزه‌ای. مجله تحقیقات آب و خاک ایران. 50 (1): 76-65.
چابک­پور، ج.، صمدی، ا. و مریخی، م. 1397. اعمال روش گشتاورگیری زمانی بر روی منحنی­های رخنه آلودگی خروجی از محیط­های سنگدانه­ای. مجله تحقیقات آب و خاک ایران. 49(3): 640-629.
صدقی­اصل، م. 1389. مطالعه حدود تشابه دوپویی برای جریان­های تدریجی ماندگار درون محیط­های متخلخل درشت­دانه. رساله دکتری سازه­های آبی، دانشکده مهندسی آبیاری و آبادانی، دانشگاه تهران.
محمودیان شوشتری، م. 1387. اصول جریان در مجاری روباز. انتشارات دانشگاه شهید چمران اهواز.
میرناصری، م.، عمادی، ع.ر.، ظهیری، ع.ر. و غلامی سفیدکوهی، م.ع. 1400. بررسی آزمایشگاهی و عددی تاثیر ضخامت بستر رسوبی و فرم بستر تلماسه بر جابجایی آلودگی در رودخانه­ها. نشریه هیدرولیک. 16(4): 20-1.
میرناصری، م.، عمادی، ع.ر.، ظهیری، ع.ر. و غلامی سفیدکوهی، م.ع. 1400. بررسی آزمایشگاهی و عددی تاثیر نواحی فرم بستر خیزاب-‌چالاب بر جابجایی آلودگی در رودخانه‌های با بستر شنی. مجله تحقیقات آب و خاک ایران. 52 (4):1040-1025.
نیکبخت، ز.، عمادی، ع.ر. و میرناصری، م. 1401. بررسی آزمایشگاهی و عددی اثر سدهای اصلاحی گابیونی بر پارامترهای مدل نگهداشت موقت (TSM) در انتقال آلودگی در رودخانه­ها. مجله تحقیقات مهندسی سازه­های آبیاری و زهکشی. 23 (87): 144-119.
واقفی، م.، قدسیان، م. و صالحی نیشابوری، س.ع. 1388. مطالعه آزمایشگاهی الگوی جریان سه‌بعدی پیرامون آبشکن T شکل مستقر در قوس 23 درجه. مجله پژوهش‌های حفاظت آب و خاک. 16(1): 105-79.
Azizullah, A., Khattak, M.N.K., Richter, P. and Häder, D.P. 2011. Water pollution in Pakistan and its impact on public health—a review. Journal of Environment International. 37(2): 479-497.
Bencala, K. 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research. 19(3): 732-738.
Bencala, K.E. and Walters, R.A. 1983. Simulation of solute transport in a mountain pool-and riffle stream: a transient storage model. Water Resource Research. 19(3): 112–124.
Camacho, L.A. and González, R.A. 2008. Calibration and predictive ability analysis of longitudinal solute transport models in mountain streams. Environmental fluid mechanics. 8(5):597–604.
Chanson, H. 2004. Environmental hydraulics of open channel flows. Elsevier Butterworth-Heinemann Linacre House, Jordan Hill, Oxford.
Genuchten, M., Leij, F., Skaggs, T. and Toride, N. 2013. Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. Journal of Hydrol. Hydromech. 61(2): 146–160.
Gonzales-Pinzon, R., Haggerty, R. and Dentz, M. 2013. Scaling and predicting solute transport processes in streams. Water Resources Research. 49(7): 4071-4088.
Jin, L., Siegel, D.I., Lautz, L.K. and Otz, M.H. 2009. Transient  storage  and downstream  solute  transport  in  nested  stream  reaches affected  by  beaver  dams. Hydrological Processes. 23(17): 2438–2449.
Kelleher, C., Wagener, T., McGlynn, B., Ward, A.S., Gooseff, M.N. and Payn, R.A. 2013. Identifiability of transient storage model parameters along a mountain stream. Water Resources Research. 49(9): 5290–5306.
Knapp, J.L.A. and Kelleher. C. 2020. A perspective on the future of transient storage modeling: Let's stop chasing our tails. Water Resources Research. 56(3):1-7.
Phanikumar, M.S., Aslam, I., Shen, C., Long, D.T. and Voice, T.C. 2007. Separating surface storage from hyporheic retention in natural streams using wavelet decomposition of acoustic Doppler current profiles. Water Resources Research, 43, W05406.
Rana, S.M.M., Boccelli, D.L., Scott, D.T. and Hester, E.T. 2019. Parameter Uncertainty with Flow Variation of the One-dimensional Solute Transport Model for Small Streams using Markov chain MonteCarlo.  Journal of Hydrology 575: 1145-1154.
Runkel, R.L. 1998. One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. U.S. Geological Survey, Water-Resources investigations, Report 98-4018. 73 p, Denver, Colorado.
Runkel, R.L. and Broshears, R.E. 1991. One-dimensional transport with inflow and storage (OTIS)-A solute transport model for small streams: Boulder, Colo., University of Colorado, CADSWES Technical Report 91-01, 85 p.
Seo, I.W. and Cheong, T.S. 2001. Moment-based calculation of parameters for the storage zone model for river dispersion. Journal of Hydraulic Engineering. 127(6): 453-465.
Sokác, M. 2017. Determination of the longitudinal dispersion coefficient in lowland streams with occurrence of dead zones. Environmental Engineering 10th International Conference, Vilnius Gediminas Technical University Lithuania. 27-28 April.
Yisa, J. and Jimoh, T. 2010. Analytical studies on water quality index of river Landzu. American journal of applied sciences. 7(4): 453-458