بررسی تأثیر سطوح ایستابی کم عمق و شور بر عملکرد و کارآیی مصرف آب گیاه کینوا (Chenopodium Quinoa Willd) در محیط گلخانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 استاد، گروه مهندسی آب، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

3 استادیار بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی،

چکیده

در این مطالعه به بررسی تاثیر آب زیرزمینی کم عمق و شور بر عملکرد و پارامترهای گیاهی کینوا رقم تیتیکاکا، در محیط گلخانه در دو سال زراعی 1397 و 1398پرداخته شد. آزمایش در قالب طرح فاکتوریل بلوک‌های کامل تصادفی با 3 تکرار انجام شد. تیمارهای اعمال شده شامل سطوح ایستابی کم عمق (با اعماق 6/0، 8/0 و 1/1 متر) و شور (با سطوح شوری 1، 2، 6 و 10 دسی زیمنس بر متر از نمک Nacl) بود. نتایج نشان داد با افزایش شوری آب از 1 تا 10 دسی زیمنس بر متر و با افزایش عمق سطح ایستابی میزان آب زیر زمینی مورد استفاده، درصد مشارکت آب زیر زمینی و مشارکت آب زیر زمینی به طور معنی‌داری کاهش یافت. درصد مشارکت آب زیرزمینی برای سطوح مختلف شوری 1، 2،6 و 10 دسی زیمنس بر متر در عمق‌های سطح ایستابی 6/0، 8/0 و 1/1 متر به ترتیب (12/71، 51/55، 43/37)، (68/66، 21/51، 84/35)، (1397/60، 92/46، 57/32) و (93/56، 03/43 و 15/30) حاصل شد. افزایش شوری موجب کاهش عملکرد بیولوژیک و عملکرد دانه و افزایش عمق سطح ایستابی سبب افزایش عملکرد بیولوژیک و عملکرد دانه گردید. نتایج کلی پژوهش نشان داد در هیچ‌کدام از تیمارها، نیاز آبی گیاه به صورت صددرصدی در هیچ روزی توسط آب زیرزمینی تامین نشده و همواره بخشی از نیاز آبی گیاه در طول دوره رشد از طریق آبیاری تامین گردیده است. همچنین می‌توان گفت که استفاده از منابع آبی زیرزمینی کم عمق و شور (شوری کمتر از 2 دسی زیمنس بر متر) به منظور رفع نیاز آبی گیاه کینوا می‌تواند سبب کاهش میزان آبیاری و کمک به تبخیر و تعرق گیاه گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of shallow and saline waterlogging levels on the yield and efficiency of water consumption of quinoa (Chenopodium Quinoa Wild) plant in the greenhouse environment

نویسندگان [English]

  • Yazdan Mohamadi 1
  • Hooshang Ghamarnia 2
  • Mehdi Jovzi 3
1 Ph.D Candidate, Department of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2 Professor, Department of Water Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
3 Assistant Professor, Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran.
چکیده [English]

In this study, the effect of shallow and saline groundwater on the yield andparameters of quinoa in the greenhouse environment in two crop years 2018 and 2019 was investigated. The experiment was conducted in the form of factorial design of randomized complete blocks with 3 replications. The applied treatments included shallow (with depths of 0.6, 0.8 and 1.1 m) and saline (with salinity levels of 1,2, 6 and 10 decisiemens/meter of NaCl salt). The results showed that with the increase of water salinity from 1 to 10 decisiemens/meter and with the increase of the depth of the groundwater level, the percentage of groundwater contribution and the contribution of groundwater decreased significantly.

The percentage of underground water participation for different salinity levels of 1, 2, 6 and 10 decisiemens/m in the depths of the water table 0.6, 0.8 and 1.1 meters respectively (37.43, 55.51, 71.12), (35/84, 51.21, 66.68,), (32.57, 46.92, 60.1397) and (30.15, 43/03, 56.93) were obtained. the increase in salinity caused a decrease in biological yield and an increase in the depth of the ponding surface caused an increase in biological yield and grain yield.

The general results of the research showed that in none of the treatments, the water requirement of the plant was never provided by underground water in a hundred percent way, and a part of the water requirement of the plant was always supplied through irrigation during the growth period. It can also be said that the use of shallow and salty underground water resources (salinity less than 2 decisiemens/meter) in order to meet the water needs of the quinoa plant can reduce the amount of irrigation and contribute to the evaporation and transpiration of the plant

کلیدواژه‌ها [English]

  • lysimeter
  • quinoa
  • yield
  • salinity
  • shallow ground water
Adolf, V.I., Jacobsen, S.E. and Shabala, S. 2013. Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany 92: 43–54.
Ayars, J.E. and Schoneman, R.A. 1986. Use of saline water from a shallow water table by cotton. Transactions of the ASAE. 29 (6): 1674-1678.
Ayars, J.E. and  Schoneman, R.A. 2006. Irrigating field crops in the presence of salinegroundwater. Irrigation and Drainage. Volume55, Issue3, Special Issue: 19th ICID International Congress, Beijing, 265-279.
Ayars, J.E., Christen, E.W. and Hornbuckle, J.W. (2006. Controlled drainage for improvedwater management in arid regions irrigated agriculture. Agricultural Water Management. 86: 128–139.
Ayars, J.E., Shouse, P. and Lesch, S.M. 2009. In situ use of ground water by alfalfa originalresearch article. Agricultural Water Management. 96: 1579–1586.
Beyrami, H., Rahimian, M. H., Salehi, M. andYazdani-Biouki, R. 2020. Effect of different levels of irrigation water salinity on quinoa (Chenopodium quinoa) yield and yield components in spring planting. Journal of Crop Production. 12(4):111-120.
Brisson, N., Rebisrem ,B., Zimmer,D. and Renault, P. (2002. Response of the root system of a winter wheat crop to waterlogging. Plant Soil, 243: 43-55.
Chen, sh., Mao, X. and sh. S. 2022. Response and contribution of shallow groundwater to soil water/salt budget and crop growth in layered soils. Agricultural Water Management. 266: 107574.
FAO. 2011. Quinoa: An ancient crop to contribute to world food security, Food and Agriculture Organization of the United Nations Regional Office for Latin America and the Caribbean Av. Dag Hammarskjöld 3241, Vitacura, Santiago, Chile rlc-quinoa@fao.org
FAO-ALADI: Tendencias y perspectivas del comercio internacional de quinua Santiago 2013.
Fronza, D. and Vinícius Folegatti, M. 2003. Water consumption of the Estevia (Stevia rebaudiana Bertoni) crop estimated through microlysimeter, Journal of Scientia Agricola. 60(3): 595-599.
Ghamarnia, H. and Farmani fard, M. 2014. Assessment of the Supplementary Irrigation Effect on Wheat (Triticum aestivum L.) Water Requirement in the Presence of Shallow Groundwater. Irrigation and Water Engineering. 4(2): 99-112.
Ghamarnia, H. and Gowing, J.W. 2007. Root water uptake modeling in the presenceof surface irrigation and saline shallow water table. In: ICID 22nd EuropeanRegional Conference, Pavia, Italy, 2–7 September.
Ghamarnia, H. and Jalili, Z. 2014. Shallow saline groundwater use by Black cumin (Nigella sativa L.) inthe presence of surface water in a semi-arid region. Agricultural Water Management. 132: 89– 100.
Ghamarnia, H., Gholamian, M., Sepehri, S., Arji, I. and Rezvani, V. 2012. Groundwatercontribution by safflower (Carthamus tinctorius L.) under high salinity, differentwater table levels, with and without irrigation. Journal of Irrigation and DrainageEngineering. 138 (2): 156–165.
Ghamarnia, H. and Jalili, Z. 2014. Shallow saline groundwater use by Black cumin (Nigella sativa L.) inthe presence of surface water in a semi-arid region. Agricultural Water Management. 132: 89– 100.
Ghamarnia, H., Jalili, Z. and Rezvani, S. V. 2021. Investigation of Different Levels of Irrigation on Yield and Water Use Efficiency of Stevia Rebaudiana Bertoni in Greenhouse and Field Environment Conditions. Iranian Journal of Soil and Water Research. 51(12): 3115-3125. 
Gowing, J.W., Rose, D.A. and Ghamarnia, H. 2009. The effect of salinity on water produc-tivity of wheat under deficit irrigation above shallow groundwater. AgriculturalWater Management. 96: 517–524.
Grimes, D.W. and Henderson, D.W. 1984. Developing the Resource Potential of a Shallow Water Table Contribution. California Water Resource Center, University of California, Davis, pp. 39 (No. 188.).
Gupta, R., Yadav, R. L. and Rajendra, G. 1993. Ground water contribution to evapotranspiration of sugarcane during summer. Cooperative-Sugar. 25: 113-115.
Hariadi, Y. Marandon, K., Tian, Y., Jacobsen, S.-E. and Shabala, S. 2010. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Journal of Experimental Botany.62: 185–193.
Jafari, N., Aghayari, F. and Paknejad, F. 2019. Effect of Different Deficit-Irrigation Methods on Yield and Water Use Efficiency of Wheat (Parsi Cultivar). JOURNAL OF CROP ECOPHYSIOLOGY (AGRICULTURE SCIENCE). 12(4 (48) ): 581-51398.
Jamali, S. and Ansari, H. 2022. Scheduling Quinoa Irrigation by Crop Water Stress Index. Iranian Journal of Irrigation & Drainage. 15(6): 1263-1274.
Koyro H.W., Lieth H. and Eisa S.S. 2008. Salt tolerance of Chenopodium quinoa Willd., grains of the Andes: influence of salinity on biomass production, yield, composition of reserves in the seeds, water and solute relations. In Mangroves and Halophytes: Restoration and Utilisation (pp. 133-145). Springer, Dordrecht.
Liu, J., Yang, H., Gosling, S.N., Kummu, M., Flörke,M., Pfister, S., Hanasaki, N., Wada, Y., Zhang, X., Zheng, C., Alcamo, J. and Oki, T. 2017. Water scarcity assessments in the past, present and future. Earth's Future. 5(6): 545-559.
Marzban, H., Sadraei Javaheri, A., Zibaei, M., Nazemosadat, S.M.J. and Karimi, L. 2019. Study of the Status of Resources and Water Consumption in Iran and Improving the Situation. WATER AND WASTEWATER. 30(4 (122): 16-32. SID.
Moameni, A. 2011. Geographical Distribution and Salinity Levels of Soil Resources of Iran. Iranian Journal of Soil Research. 24(3): 203-215. 
Nosetto, M.D., Jobbagy, E.G., Jackson, R.B. and Sznaider, G.A. 2009. Reciprocal influence of crops and shallow ground water in sandy landscapes of the inland pampas. Field Crop Researches, 113: 138-148.
Panuccio, M.R., Jacobsen, S.E., Akhtar, S.S. and  Muscolo, A. 2014. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB plants, 6.
Qadir, M., Smakhtin, V., Koo-Oshima, S. and Guenther, E. 2022. Global Water Scarcity and Unconventional Water Resources. In: Qadir, M., Smakhtin, V., Koo-Oshima, S., Guenther, E. (eds) Unconventional Water Resources . Springer, Cham.
Ragab, R.A. and Amer, F. 1986. Estimating water table contribution to the water supplyof maize. Journal of Agricultural Water Management. 11: 221–230.
Ragab, R.A., Amer, F. and El-ghamary, W.M. 1988. The conjunctive use of rainfall andshallow water table in meeting water requirements of faba beans. Journal ofAgronomy and Crop Science. 160 (1): 47–53.
Ramezani moghadam, J., Naseri, A. A., Hooshmand, A. and Meskar bashi, M. 2016. Lysimeter Study to Evaluate The Effects of Water Stress and Nitrogen Fertilizer on Maize in The Shallow Ground Water. Irrigation Sciences and Engineering. 39(3): 1-11.
Razzaghi, F., Ahmadi, S.H., Jacobsen, S.-E., Jensen, C.R. and Andersen, M.N. 2012. Effects of Salinity and Soil–Drying on Radiation Use Efficiency, Water Productivity and Yield of Quinoa (Chenopodium quinoa Willd.). Journal of Agronomy and Crop Science. 198: 173-184
Saeidi S.M., Siadat S.A., Moshatati A., Moradi-Telavat M.A. and Sepahvand N.A. 2020. Effect of sowing time and nitrogen fertilizer rates on growth, seed yield and nitrogen use efficiency of quinoa (Chenopodium quinoa Wild) in Ahvaz, Iran. Iranian Journal of Crop Sciences. 21(4): 354-367.
Saatsaz, M. 2020. A historical investigation on water resources management in Iran. Environ Dev Sustain. 22: 1749–1785.
Salek Mearaji, H., Tavakoli, A., Ghanimati, S. and Kasirlou, P. 2019. The effect of salinity stress on traits related to germination of quinoa (Chenopodium quinoa Willd.). Agroecology Journal. 15(3): 59-69.
Shabala S., Hariadi Y. and  Jacobsen S.E. 2013. Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem na+ loading and stomatal density. Journal of plant physiology. 170(10): .906-914.
Sharifian, H., Jamali, S. and Sajadi, F. 2018. Investigation the Effect of Different Salinity Levels on the Morphological Parameters of Quinoa (Chenopodium quinoa Willd. ) under Different Irrigation Regimes. water and soil science (journal of science and technology of agriculture and natural resources). 22(2): 15-27.
Talebnejad, R. and A. R. Sepaskhah. 2015. Effect of different saline groundwater depths and irrigation water     salinities on yield and water use of quinoa in lysimeter. Agriculture Water Management. 148: 177-188
Talebnejad, R. and Sepaskhah, A. R. 2015. Effect of different saline groundwater depths and irrigation water salinities on yield and water use of quinoa in lysimeter. Agricultural Water Management. 148: 177–188.
Talebnejad, R., Bahrami, M. and Sepaskhah, A. 2022. Planting dates and irrigation regimes influence on growth and yield of quinoa (Chenopodium quinoa) in a semi-arid area. Iran Agricultural Research. 40(2): 103-120.
Vilcacundo, R. and  HernA¡ndez-Ledesma, B. 2017. Nutritional and biological value of quinoa (Chenopodium quinoa Willd.), Current Opinion in Food Science. 14: 1-6.