ارزیابی توابع غیرخطی رشد در توصیف شاخص سطح برگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مهندسی آبیاری و آبادانی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران.

2 گروه مهندسی آبیاری و آبادانی، دانشگاه تهران، کرج، ایران

3 گروه مهندسی آبیاری و آبادانی دانشگاه تهران

چکیده

شاخص سطح برگ (LAI) یکی از مهم ترین پارامترها در مطالعات رشد گیاه است که رابطه مستقیمی با میزان جذب نور، فتوسنتز، شاخص های فیزیولوژیکی گیاه، عملکرد و غیره دارد و کمّی سازی آن بر اساس عوامل زودیافت امری مهم تلقی می شود. در این مطالعه، از توابع مختلف رشد نظیر گومپرتز، گوسین، پلی‌نومیال و لجستیک برای مدل سازی شاخص سطح برگ ذرت علوفه‌ای (به عنوان متغیر وابسته) براساس درجه-روز-رشد (به عنوان متغیر مستقل) استفاده شد. تیمارهای مورد مطالعه شامل دو مدیریت آبیاری پالسی و آبیاری پیوسته، هر کدام در سه سطح MAD برابر 100، 80 و 60 درصد بود که به صورت طرح بلوک های کامل تصادفی اعمال گردید. نتایج نشان داد که بر اساس فراسنجه های R2، NRMSE و EF، هر چهار مدل مورد استفاده، در برآورد شاخص سطح برگ در طول دوره رشد، از صحت و دقت بالایی برخوردار بودند. از میان چهار مدل مورد بررسی، مدل لجستیک در بین مدیریت ها و سطوح مختلف آبیاری، بهترین نتیجه را از خود نشان داد. همچنین این مدل، در بین هر دو تیمار آبیاری پیوسته و پالسی، در MAD برابر 100 درصد، بالاترین کارایی را داشت. نتایج این مطالعه می تواند پایه و اساسی جهت پایش رشد محصول و ارزیابی مدیریت های مختلف در زنجیره آب، خاک و گیاه و نهایتاً ابزاری مفید برای مدیریت و برنامه ریزی جهت نیل به امنیت غذایی باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Nonlinear Growth Functions in the Description of Leaf Area Index

نویسندگان [English]

  • Iman Hajirad 1
  • Khaled Ahmadaali 2
  • Abdolmajid Liaghat 3
1 Ph.D. Candidate, Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural
2 Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
3 Professor of University of Tehran
چکیده [English]

Leaf area index (LAI) is one of the most important parameters in plant growth studies, which has a direct relationship with the amount of light absorption, photosynthesis, plant physiological indicators, yield, etc. to be In this study, different growth functions such as Gompertz, Gaussian, polynomial and logistic were used to model silage maize leaf area index (as a dependent variable) based on growth degree days (as an independent variable). The studied treatments included pulse irrigation and continuous irrigation, each at three levels of MAD equal to 100, 80 and 60%, which were applied as a completely randomized block design. The results showed that based on R2, NRMSE and EF parameters, all four used models were highly accurate and precise in estimating the leaf area index during the growth period. Among the four investigated models, the logistic model showed the best result among different irrigation managements and levels. Also, this model had the highest efficiency among both continuous and pulse irrigation treatments, in MAD equal to 100%. The results of this study can be a basis for monitoring crop growth and evaluating different managements in the water, soil and plant chain, and finally a useful tool for management and planning to achieve food security.

کلیدواژه‌ها [English]

  • Crop Modeling
  • Logistic Model
  • Deficit Irrigation
  • Silage Maize
  • Full Irrigation
حاجی­راد، ا.، احمدآلی، خ. و عبدالمجید، ل. 1402. مدل­سازی ریاضی تبخیر- تعرق محصولات استراتژیک در عرض­های جغرافیایی مختلف کشور. تحقیقات منابع آب ایران. 19(5): 51-61.
حاجی­راد، ا.، میرلطیفی، م.، دهقانی­سانیج، ح. و محمدی، س. 1400. تأثیر دو نوع مدیریت آبیاری بر شاخص­های رشد ذرت علوفه­ای در اقلیم خشک و نیمه­خشک. نشریه آبیاری و زهکشی. 15(5): 1444-1458.
کمالی، ح.، خرمیان، م.، ناصرین، ا. و حسین­پور، م. 1400. مدل لجستیکی برآورد مقدار محصول چغندرقند پاییزه در استان خوزستان. چغندرقند. 37(1): 87-98.
Abramowitz, M., Stegun, I. A. and Romer, R. H. 1988. Handbook of mathematical functions with formulas, graphs, and mathematical tables.
Berger, R. D. 1981. Comparison of the Gompertz and Logistic Equations to Describe Plant Disease Progress. Phytopathology. 71(7): 716-719.
Blackman, V. H. 1919. The compound interest law and plant growth. Annals of botany, 33(131): 353-360.
Chang, H., Cai, J., Zhang, B., Wei, Z. and Xu, D. 2023. Early yield forecasting of maize by combining remote sensing images and field data with logistic models. Remote Sensing. 15(4): 1025.
Coelho, D. T. and Dale, R. F.1980. An Energy‐Crop Growth Variable and Temperature Function for Predicting Corn Growth and Development: Planting to Silking 1. Agronomy Journal, 72(3): 503-510.
Coleman, B. D. 1981. On optimal intrinsic growth rates for populations in periodically changing environments. Journal of Mathematical Biology. 12(3): 343-354.
Cross, H. Z. and Zuber, M. S.1972. Prediction of flowering dates in maize based on different methods of estimating thermal units 1. Agronomy Journal. 64(3): 351-355.
Gompertz, B. 1825. XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London. (115): 513-583.
Guo, Y., Wang, Q. J., Zhang, J. H. and Wei, K. 2023. PREDICTION OF DRY MATTER AND YIELD OF SPRING MAIZE (ZEA MAYS L.) IN NORTHWEST CHINA BASED ON LOGISTIC MODEL. Applied Ecology & Environmental Research. 21(1).
Hammad, H. M., Abbas, F., Ahmad, A., Bakhat, H. F., Farhad, W., Wilkerson, C. J. and Hoogenboom, G. 2020. Predicting kernel growth of maize under controlled water and nitrogen applications. International Journal of Plant Production. 14: 609-620.
Hocaoğlu, O., & Coşkun, Y. 2018. Evaluation of dry matter accumulation in triticale by different sigmoidal growth models in west anatolia of Turkey. Genetika, 50(2): 561-574.
Homaee, M., Dirksen, C. and Feddes, R. A. 2002. Simulation of root water uptake: I. Non-uniform transient salinity using different macroscopic reduction functions. Agricultural water management. 57(2): 89-109.
Hoogenboom, G. 2000. Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and forest meteorology. 103(1-2): 137-157.
Hunt, L. A. and Boote, K. J. 1998. Data for model operation, calibration, and evaluation. Understanding options for agricultural production. 9-39.
Jonsson, P. and Eklundh, L. 2002. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE transactions on Geoscience and Remote Sensing. 40(8): 1824-1832.
Kage, H., and Stützel, H. 1999. A simple empirical model for predicting development and dry matter partitioning in cauliflower (Brassica oleracea L. botrytis). Scientia horticulturae, 80(1-2): 19-38.
Kamali, H., and Zand-Parsa, S.2017. Estimation of sugar beet yield and its dry matter partitioning under different irrigation and nitrogen levels. Modern Applied Science, 11(1): 141-156.
Kiniry, J. R., and Keener, M. E. 1982. An Enzyme Kinetic Equation to Estimate Maize Development Rates 1. Agronomy Journal, 74(1): 115-119.
Knížetová, H., Hyanek, J., Hájková, H., Kníže, B. and ŠIler, R. 1985. Growth curves of chickens with different type of performance. Journal of Animal Breeding and Genetics. 102(1‐5): 256-270.
Lecoeur, J., and Guilioni, L. 1998. Rate of leaf production in response to soil water deficits in field pea. Field Crops Research, 57(3): 319-328.
Lizaso, J. I., Batchelor, W. D. and Westgate, M. E. 2003. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field crops research. 80(1): 1-17.
Loss, S. P., Kirby, E. J. M., Siddique, K. H. M. and Perry, M. W. 1989. Grain growth and development of old and modern Australian wheats. Field Crops Research. 21(2): 131-146.
Mahbod, M., Sepaskhah, A. R. and Zand-Parsa, S. 2014. Estimation of yield and dry matter of winter wheat using logistic model under different irrigation water regimes and nitrogen application rates. Archives of Agronomy and Soil Science. 60(12): 1661-1676.
McMaster, G. S. and Wilhelm, W. W. 1997. Growing degree-days: one equation, two interpretations. Agricultural and forest meteorology. 87(4): 291-300.
Meade, K. A., Cooper, M. and Beavis, W. D. 2013. Modeling biomass accumulation in maize kernels. Field Crops Research. 151: 92-100.
Mello, A., Toebe, M., Marchioro, V. S., De Souza, R. R., Paraginski, J. A., Somavilla, J. C. and da Rocha Borges, M. E. 2023. Nonlinear Models in the Description of Sunflower Cultivars Growth Considering Heteroscedasticity. Journal of Plant Growth Regulation. 42(11): 7215-7228.
Mohammadi, S., Mirlatifi, S. M., Homaee, M., Dehghanisanij, H. and Hajirad, I. 2023. Evaluation of silage maize production under pulsed drip irrigation in a semi-arid region. Irrigation Science. 1-15.
Nahashon, S. N., Aggrey, S. E., Adefope, N. A. and Amenyenu, A. 2006. Modeling growth characteristics of meat-type guinea fowl. Poultry science. 85(5): 943-946.
Pirmoradian, N. and Sepaskhah, A. R. 2006. A very simple model for yield prediction of rice under different water and nitrogen applications. Biosystems Engineering. 93(1): 25-34.
Rafiee, M. R. and Mahbod, M. 2020. Application of logistic model to estimate eggplant yield and dry matter under different levels of salinity and water deficit in greenhouse and outdoor conditions. Water SA. 46(3): 419-428.
Rogers, S. R., Pesti, G. M. and Marks, H. L. 1987. Comparison of three nonlinear regression models for describing broiler growth curves. Growth. 51(2): 229-239.
Russelle, M. P., Wilhelm, W. W., Olson, R. A. and Power, J. F. 1984. Growth analysis based on degree days 1. Crop science. 24(1): 28-32.
Sahoo, U. K., Nath, A. J. and Lalnunpuii, K. 2021. Biomass estimation models, biomass storage and ecosystem carbon stock in sweet orange orchards: Implications for land use management. Acta Ecologica Sinica. 41(1): 57-63.
Sepaskhah, A. R., Azizian, A. and Tavakoli, A. R. 2006. Optimal applied water and nitrogen for winter wheat under variable seasonal rainfall and planning scenarios for consequent crops in a semi-arid region. Agricultural water management. 84(1-2): 113-122.
Sepaskhah, A. R., Fahandezh-Saadi, S., and Zand-Parsa, S. 2011. Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management. 99(1): 51-57.
Shabani, A., Sepaskhah, A. R. and Kamgar-Haghighi, A. A. 2014. Estimation of yield and dry matter of rapeseed using logistic model under water salinity and deficit irrigation. Archives of Agronomy and Soil Science. 60(7): 951-969.
Shiri, J., Nazemi, A. H., Sadraddini, A. A., Landeras, G., Kisi, O., Fard, A. F., and Marti, P. 2014. Comparison of heuristic and empirical approaches for estimating reference evapotranspiration from limited inputs in Iran. Computers and Electronics in Agriculture. 108: 230-241.
Steppuhn, H. A. R. O. L. D., Van Genuchten, M. T. and Grieve, C. M. 2005. Root‐zone salinity: I. Selecting a product–yield index and response function for crop tolerance. Crop Science. 45(1): 209-220.
Su, L., Tao, W., Sun, Y., Shan, Y. and Wang, Q. 2022. Mathematical Models of Leaf Area Index and Yield for Grapevines Grown in the Turpan Area, Xinjiang, China. Agronomy. 12(5): 988.
Tollenaar, M., Daynard, T. B. and Hunter, R. B. 1979. Effect of temperature on rate of leaf appearance and flowering date in maize 1. Crop Science. 19(3): 363-366.
Tscheschke, P. D., and Gilley, J. R. 1979. Status and verification of Nebraska's corn growth model—CORNGRO. Transactions of the ASAE. 22(6): 1329-1337.
Wang, X. L. 1986. Logistic simulating model on crop dry matter accumulating dynamics. Agric. Meteorol, 7: 14-19.
Wardhani, W. S., and Kusumastuti, P. 2014. Describing the height growth of corn using Logistic and Gompertz model. AGRIVITA, Journal of Agricultural Science. 35(3): 237-241.
Weibull, W.1951. A statistical distribution function of wide applicability. Journal of applied mechanics.
Wu, Y., Yan, S., Fan, J., Zhang, F., Xiang, Y., Zheng, J. and Guo, J. 2021. Responses of growth, fruit yield, and quality and water productivity of greenhouse tomato to deficit drip irrigation. Scientia Horticulturae. 275: 109710.
Xiangxiang, W., Quanjiu, W., Jun, F., Lijun, S. and Xinlei, S. 2014. Logistic model analysis of winter wheat growth on China's Loess Plateau. Canadian Journal of Plant Science. 94(8): 1471-1479.
Yin, Xinyou, J. A. N. Goudriaan, Egbert A. Lantinga, J. A. N. Vos, and Huub J. Spiertz. 2003. A flexible sigmoid function of determinate growth. Annals of botany. 91: 361-371.
Yu, Q., Fu, B. P., and Yao, K. M. 1995. A universal growth model on rice LAI. Agric. Meteorol, 16: 6-8.
Yu, Q., Liu, J., Zhang, Y. and Li, J. 2002. Simulation of rice biomass accumulation by an extended logistic model including influence of meteorological factors. International Journal of Biometeorology. 46: 185-191.
Zand-Parsa, S., Sepaskhah, A. R. and Ronaghi, A. 2006. Development and evaluation of integrated water and nitrogen model for maize. Agricultural Water Management. 81(3): 227-256