شبیه‌سازی عددی جریان بر روی سرریز جانبی کنگره‌ای به روش شبیه‌سازی گردابه‌های بزرگ (LES)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی آب، دانشگاه فردوسی مشهد

چکیده

در پژوهش حاضر جریان پیرامون سرریز‌های جانبی کنگره‌ای با استفاده از شش مدل‌ مختلف مقیاس زیر شبکه‌ای در روش شبیه‌سازی گردابه‌های بزرگ (LES) و نیز چهار مدل مبتنی بر RANS به صورت سه بعدی در اندازه‌ی شبکه‌ی محاسباتی مختلف با استفاده از نرم‌افزار ANSYS FLUENT مدلسازی شد و با نتایج آزمایشگاهی مقایسه گردید. با مقایسـه نتـایج دبی و پروفیل سطح آب بـه دسـت آمـده از شـبیه‌سازی عددی و نتایج آزمایشگاهی، مدل مقیاس زیر‌شبکه‌ی مناسب در روش LES برای مطالعات هیدرودینامیک و پارامتریک انتخاب شـد و با بهترین مدل مبتنی بر RANS ( مدل K-ε-Standard) مقایسه شد. نتایج هر دو مدل با مقادیر آزمایشگاهی مطابقت خوبی دارد. هر چند پروفیل سطح آب به دست آمده از مدل مبتنی بر RANS نسبت به روش شبیه‌سازی گردابه‌های بزرگ از دقت بالاتری برخوردار است اما روش LES می‌تواند الگو و رفتار پیچیده‌ی جریان را با جزئیات بیشتری نسبت به مدل مبتنی بر RANS پیش‌بینی نماید. بنابراین با توجه به نتایج مناسب به دست آمده از مقایسه‌ی دبی‌ها و پروفیل‌های سطح آب آزمایشگاهی و شبیه‌سازی عددی و نیز اطمینان در مورد توانایی نسبتا بالای روش شبیه‌سازی گردابه‌های بزرگ، پارامتر‌های توزیع سرعت، جریان ثانویه و توزیع تنش برشی در کانال‌های دارای سرریز جانبی کنگره‌ای مورد بررسی قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Modeling over a Labyrinth Side Weirs by Using Large Eddy Simulation method (LES)

نویسندگان [English]

  • Fatemeh Attarzadeh
  • Saeed Reza Khodashenas
  • Ali Naghi Ziaei
Department of Water Science and Engineering, Ferdowsi University of Mashhad
چکیده [English]

In this study, three-dimensional flow around the labyrinth side weir was simulated by using a variety of Subgrid-Scale (SGS) models in LES method and four turbulence models based on RANS method with different computational grid size in ANSYS Fluent software. The simulation and experimental results were compared. The predicted flow discharge and water surface profile were validated using experimental data and the proper Subgrid-Scale (SGS) model in LES method was selected for hydrodynamic and parametric studies and were compared with the proper turbulence models based on RANS. All numerical values are very close to experimental values. Although the predicted water surface profile by turbulence models based on RANS method (K-ε-Standard model) was better than of LES Method, but the results of the hydraulic analysis showed that all Subgrid-Scale (SGS) models in the LES metod can be predicted the complex flow patterns and behaviors in more detail than turbulence models based on RANS method. As the result of flow discharge and water surface profile and also high relatively confidence in the ability of large Eddy Simulation method, the velocity, shear stress distribution and secondary flow channels with labyrinth side weir were investigated

کلیدواژه‌ها [English]

  • Labyrinth side weir
  • Large Eddy Simulation
  • Subgrid-Scale (SGS) models
  • Turbulence Modeling
اسمعیل پور، ل.، فرسادی زاده، د. و حسین زاده دلیر، ع. 1395. بررسی مشخصات هیدرولیکی سرریز جانبی کنگره‌ای نیم‌دایره‌ای یک طرفه.مجله دانش آب و خاک. 26 .1: 187-195
زاهدی خامنه، ح.1391. مطالعه تاثیر تغییر هندسه سرریز و افزایش تعداد سیکل بر ضریب تخلیه سرریزهای جانبی منقاره‌ای و نیم‌دایره‌ای.پایان‌نامه کارشناسی ارشد سازه‌های آبی، دانشکده کشاورزی، دانشگاه فردوسی مشهد.
 نکویی، م. ع. 1385.بررسی و تعیین ضریب دبی سرریز جانبی منقاری به صورت آزمایشگاهی. پایان‌نامه کارشناسی ارشد مهندسی آب، دانشکده مهندسی عمران، دانشگاه صنعتی شریف.
ولایتی، ف.، وطن خواه محمد آبادی، ع.ر. 1398. محاسبه بده سرریز جانبی لبه پهن ذوزنقه ای در رژیم جریان زیر بحرانی بر اساس تئوری جریان متغیر مکانی.مجله تحقیقات کاربردی مهندسی سازه های آبیاری و زهکشی (تحقیقات مهندسی کشاورزی سابق).20 .74 :1-12
ACKERS, P., COLEMAN, SMITH and BERNOULLI, 1957. A THEORETICAL CONSIDERATION OF SIDE WEIRS AS STORMWATER OVERFLOWS. HYDRAULICS PAPER NO 11. SYMPOSIUM OF FOUR PAPERS ON SIDE SPILLWAYS. Proceedings of the institution of Civil Engineers, 6.2:250-269.
Aydin, M.C. and Emiroglu, M.E., 2013. Determination of capacity of labyrinth side weir by CFD. Flow Measurement and Instrumentation, 29:1-8.
Aydin, M.C., 2012. CFD simulation of free-surface flow over triangular labyrinth side weir. Advances in Engineering Software, 45.1:159-166.
Bremen, R. and Hager, W.H., 1989. Experiments in side-channel spillways. Journal of hydraulic Engineering, 115.5:617-635.
De Marchi, G., 1934. Essay on the performance of lateral weirs. L'Energia Elettrica, Milan, Italy, 11:849-860.
El-Khashab, A. and Smith, K.V., 1976. Experimental investigation of flow over side weirs. Journal of the Hydraulics Division, 102.9:1255-1268.
Emiroglu, M.E., Kaya, N. and Agaccioglu, H., 2009. Discharge capacity of labyrinth side weir located on a straight channel. Journal of irrigation and drainage engineering, 136.1:37-46.
FLUENT, A. 2015. 16.2 Theory Guide, release 16.2@ ANSYS. Inc. July.
Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., 1991. A dynamic subgrid‐scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3.7.1760-1765.
Khalili, M. and Honar, T., 2017. Discharge coefficient of semi-circular labyrinth side weir in subcritical flow. Water SA, 43.3:433-441
Khameneh HZ, Khodashenas SR and Esmaili K., 2014. The effect of increasing the number of cycles on the performance of labyrinth side weir. Flow Measurement and Instrumentation 39: 35-45.
Kim, W.W., Menon, S., 1997, January. Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows. In 35th aerospace sciences meeting and exhibit.
Kouchakzadeh, S., Vatankhah, A.R. and Townsend, R.D., 2001. A modified perturbation solution procedure for spatially-varied flows. Canadian Water Resources Journal, 26.3:399-416.
Neary, V.S., Sotiropoulos, F. and Odgaard, A.J., 1999. Three-dimensional numerical model of lateral-intake inflows. Journal of Hydraulic Engineering, 125.2:126-140.
Nicoud, F and Ducros, F. 1999. “Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor.Flow”. Turbulence, and Combustion. 62.3:183–20.,
Piomelli, U., Moin, P. and Ferziger, J.H., 1988. Model consistency in large eddy simulation of turbulent channel flows. The Physics of fluids, 31.7:1884-1891.
Rodi, W., Constantinescu, G. and Stoesser, T., 2013. Large-eddy simulation in hydraulics. Crc Press.
Shur, M.L., Spalart, P.R., Strelets, M.K. and Travin, A.K., 2008. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. International Journal of Heat and Fluid Flow, 29.6:1638-1649.
Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review, 91.3:99-164.
Subramanya, K. and Awasthy, S.C., 1972. Spatially varied flow over side-weirs. Journal of the Hydraulics Division, 98.1:1-10.
Vatankhah, A.R., 2011. Direct integration of gradually varied flow equation in parabolic channels. Flow Measurement and Instrumentation, 22.3:235-241.
Versteeg, H.K. and Malalasekera, W., 2007. An introduction to computational fluid dynamics: the finite volume method. Pearson education.
Zahedi Khameneh HZ, Khodashenas SR and Esmaili K, 2014. The Effect of Semi-circular side weirs on hydraulic properties and discharge coefficient of side weirs. Journal of River Engineering 25.52: 20-25.
Ziaei, A.N., Nikou, N.S., Beyhaghi, A., Attarzadeh, F. and Khodashenas, S.R., 2019. Flow simulation over a triangular labyrinth side weir in a rectangular channel. Progress in Computational Fluid Dynamics, an International Journal, 19.1:22-34