بررسی ردپای آب در تولید طیور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد منابع آب، دانشگاه بین‌المللی امام خمینی(ره)، قزوین، ایران.

2 استاد گروه علوم و مهندسی آب دانشگاه بین المللی امام خمینی ، قزوین، ایران

3 دانشیار گروه مهندسی آب دانشکده کشاورزی و منابع طبیعی دانشگاه بین المللی امام خمینی(ره)

چکیده

ردپای‌آب کشاورزی بیش از 90 درصد از منابع آب شیرین کشور را شامل می‌شود که یک سوم آن برای تغذیه، رشد و نمو حیوانات مورد استفاده قرار می‌گیرد. در این تحقیق متوسط ردپای آب‌مجازی در تولید طیور در سه استان تهران، البرز و قزوین با بکارگیری روش مکانن و هوکسترا محاسبه گردید. میزان ردپای آب‌مجازی برای تولید گوشت مرغ در استان‌های تهران، البرز و قزوین به‌ترتیب برابر با 8/5، 81/5 و 06/6 مترمکعب در کیلوگرم و برای تولید تخم‌مرغ به‌ترتیب برابر با 26/4، 66/4 و 22/4 مترمکعب در کیلوگرم بود. این در حالی است که متوسط آب مورد نیاز برای تولید هر کیلو گوشت مرغ و تخم‌مرغ در سطح دنیا به ترتیب 3/4، 34/3 مترمکعب گزارش شده است. این موضوع نشان می‌دهد ردپای آب مجازی در تولیدات طیور در ایران نسبت به متوسط جهانی بیشتر است. با توجه به پایین بودن ردپای آب مجازی در تولید گوشت مرغ نسبت به ردپای آب مجازی برای گوشت گاو، توصیه می‌شود برای حفظ همزمان منابع آب و امنیت غذایی کشور، تولیدگوشت مرغ در مقایسه با گوشت گاو در اولویت قرار گیرد. همچنین براساس نتایج حاصله و تفاوت محسوس میان ردپای آب تولیدات طیور در دو سیستم چرایی و صنعتی، پیشنهاد می‌شود از سیستم کاملا صنعتی برای پرورش طیور در کشور استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

A study of water footprint in poultry products

نویسندگان [English]

  • Ehsan Movahednejad 1
  • ALireza Shokoohi 2
  • Hadi Ramezani Etedali 3
1 M.Sc. graduated student of Water Engineering, Imam Khomeini International University, Qazvin, Iran
2 2- Professor, Water engineering dept., Imam Khomeini International University, Qazvin, Iran
3 Associate Professor, Dept. of Water Sciences and Engineering, Imam Khomeini International University
چکیده [English]

Introduction While agricultural water footprint consist more than 90 percent of Iran’s fresh water resources, about one third of it is used for animal and chicken husbandary. In the last two decades, the global trade in liquor has expanded significantly and, with it, has expanded the issue of food security from a range of countries to an international arena. The cheaper and cheaper production of commodities in areas prone to green water and the production of more expensive products for the export of blue and green water are among the characteristics that the hybrid trade has. Meat and dairy products consume more water than vegetable products because of the amount of nutrition, drinking, and water services needed by animals. Lack of attention to the amount of water consumed in water products such as meat and dairy products has increased the production of such water products over time, as world animal production has doubled from 1980 to 2004. Many Studies have studied agricultural crops water footprint in international, national and regional levels. Despite the high water footprint in the livestock and poultry sector, there are fewer studies. In the poultry sector these studies are much smaller than in livestock and their scale is limited to national and international scales and less attention has been paid to the regional and provincial sectors. The aim of this study was to investigate the water footprint and water footprint in poultry sector in three provinces of Tehran, Alborz and Qazvin.
Materials and Methods In this study using the Mekonnen and Hokkstra method, the virtual water footprint in poultry products, in Tehran, Alborz and Qazvin provinces, was estimated. In order to calculate the virtual water footprint of poultry products, it is necessary to calculate the virtual water footprint of the live animal in the first stage of the study, and then distribute this water to the products obtained. Each living animal has three components of virtual water footprints: the amount of water needed for growth and consumption of food, service and cleaning, drinking and preparing animal feed. In this study, 98 questionnaires completed by experts were used to obtain the necessary information, such as nutrition and water volume of livestock consumed in three provinces. Considering the fact that the data obtained from the questionnaire from different individuals are not normal and also outliers are found, instead of using mean and standard deviation, the mean and absolute value of deviation from the mean were used respectively.
Results and Discussion The values of virtual water footprint for producing Chicken was estimated as much as 5.8, 5.81 and 6.08 m3/kg, and it was estimated as much as 4.26, 4.66, 4.22 m3/kg for egg, in Tehran, Alborz and Qazvin provinces, respectively. It is noteworthy that the global average water footprint for chicken and egg productions are 4.3 and 3.34 m3/kg, respectively. Comparing these figures shows that the virtual water footprint in poultry production in Iran is higher than the global average. Given the low virtual water footprint for chicken and comparing with that of beef, it is recommended to focus on chicken products and for saving water and food security, simultaneously, the barriers to poultry should be eliminated. Considering the meaningful difference of water footprint between the two approaches of natural and industrial poultry husbandary, the last method is suggested.
Conclusions By examining the components of poultry water footprint, it was concluded that the only reason the virtual water footprint in white meat production is higher than the world average is higher water consumption in Iranian agriculture and production of poultry feed materials. At the same time, the low water footprint in egg production can also be attributed to the industrialization of poultry in Iran. Considering the results of this study and the comparison with the amounts of virtual water in poultry products across the region and around the world, there are two issues to note: 1) If water conservation in agricultural crops is achieved and advanced irrigation systems are used, both the virtual water footprint in crops and in poultry production can be reduced. 2) Instead of producing poultry feed in the country which results in excessive consumption of water, if international considerations allow it to import poultry feed on a wider scale than is currently available.

کلیدواژه‌ها [English]

  • water footprint
  • Egg
  • Chiken
Ababaei, B. and Etedali, H.R. 2014. Estimation of water footprint components of Iran’s wheat production: comparison of global and national scale estimates. Environmental Processes, 1(3):193-205.
Anonymous. 2016. Population census and Housing (http://www.amar.org.ir).
Anonymous. 2018. Ministry of Agriculture (http://www.maj.ir/Index.asp).
Anonymous. 2017. Association of Animal Feed and Poultry (http://www.parsnews.com).
Antonelli, M. and Tamea, S. 2015. Food-water security and virtual water trade in the Middle East and North Africa. International Journal of Water Resources Development, 31(3): 326-342.
FAO. 2005. Livestock policy brief 02. Rome: Food and Agriculture Organization.
Gerbens-leene, P.W., Nonhebel, S., and Krol, M.S. 2010. Food consumption patterns and economic growth' Increasing affluence and the use of natural resources. Appetite, 55(3): 597-608.
Helsel, D.R. and Hirsch, R.M. 1992. Statical Methods in water Resources, US Geologial survey, 340p
Hoekstra, A.Y. and Hung, P.Q. 2002 Virtual water trade. A quantification of virtual water flows between nations in relation to international crop trade. Value of water research report series 11, 166p.
Hoekstra, A.Y. and Chapagain, A.K. 2006. Water footprints of nations: water use by people as a function of their consumption pattern. In Integrated assessment of water resources and global change, Springer, Dordrecht, pp. 35-48.
Hoekstra, A.Y. 2012. The hidden water resource use behind meat and dairy. Animal Frontiers, 2(2): 3-8.
IWMI. 2000. World water and climate Atlas, http://www.iwmi.org.
Madani, K. 2014. Water management in Iran: what is causing the looming crisis?. Journal of Environmental Studies and Sciences, 4(4): 315-328.
Mekonnen, M., and Hoekstra, A.Y. 2011. National water footprint accounts: the green, blue and grey water footprint of production and consumption.
Mekonnen, M.M., and Hoekstra, A.Y. 2012. A global assessment of the water footprint of farm animal products. Ecosystems, 15(3):401-415
Mohammadi, A., Rafiee, S., Jafari, A., Dalgaard, T., Knudesen, M.T., Keyhani, A., Mosavi- Avval, SH., and Hermansen, J.E. 2013. Potential greenhouse gas emission reduction in soybean farming: a combined use of life cycle assessment and data envelopment analysis. Journal of Cleaner Production, 54: 89-100
Ramezani Etedali, H., Shokoohi, A., and Mojtabavi, SA. 2016. To use the concept of Vitrual water footprint in the production of the main products to overcome the water crisis in the Qazvin area. Water and soil, 31(2): 422-433. (In Persian)
Shokoohi, A., Ramezani Etedali, H., Mojtabavi, SA. and Singh, V.P. 2016. Using water footprint accounting for optimizing crop patterns in sustaianable development scheme (case study: Qazvin plain). Iran- Water Resources Research, 12(3):99-113. (In Persian)