کاربرد زیست محیطی وصلح آمیز از نانوذرات- نانوالیاف درتصفیه آبهای آلوده آبیاری و پساب‌های سمی زهکشی (مطالعه موردی: یون سمی مس)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تخصصی (Ph.D) علوم و مهندسی آب، گروه پژوهشی اکولوژی انسانی شهری کارگشا، ایران

2 دانشیار گروه فیزیک، دانشکده علوم، دانشگاه ارومیه، ارومیه

3 استادیار گروه نانوفناوری، دانشکده علوم، دانشگاه ارومیه، ارومیه

4 استادیار گروه مهندسی عمران، دانشکده فنی مهندسی کبودراهنگ، دانشگاه بوعلی سینا، همدان

چکیده

امروزه کاربرد علوم و فناوری­های پیشرفته، در مدیریت بهینه مخاطرات کیفی تحمیلی بر منابع زیست­محیطی، از اهمیت ویژه­ای برخوردار است. با توجه به سمیت پساب­های کشاورزی، صنعتی و خانگی برای محیط زیست، بررسی مبسوط و جداگانه موضوع تصفیه زهاب­های سمی و به­طور کلی آب‌های آلوده، جهت تکمیل روند توسعه غیرمخرب، امری ضروری به­نظر می­رسد. در این راستا و به منظور بازیافت ترکیبات حاوی فلزات سنگین و آلوده­کننده همچون مس، در زه‌اب­های محتوی کودها و سموم مضر، تولید نانوالیاف (نانوذرات پلیمری) در قالب روش الکتروریسی (تحت چهار تیمار غلظت محلول الکتروریسی، ولتاژ اعمالی، فاصله جمع­کننده با سوزن تزریق و آهنگ تزریق)، با استفاده از دستگاه الکتروریسی و ترکیب منتخب پلیمری پلی­متیل متاکریلات و حلال دی­متیل فرمامید با رویکرد استفاده از مواد اولیه ارزان­قیمت، جهت تصفیه آلودگی­های مخاطره­آمیز انتخاب شدند. هم­چنین فناوری تولید نانوذرات در قالب روش انفجار سیم (تحت چهار تیمار غلظت محلول نانوذرات، قطر سیم­های کربن استفاده شده، جریان و نیروی آرک) مورد استفاده قرار گرفت. در نهایت، با استخراج نتایج در هر فاز، به تحلیل و بررسی آن­ها پرداخته شد و نتایج نشان داد که ترکیب تیمار پلیمر پلی­متیل متاکریلات و حلال دی­متیل فرمامید در شرایط غلظت در حلال برابرwt% 25، ولتاژ اعمال شده kV 30، فاصله بین نوک سوزن و صفحه جمع­کننده cm 15 و آهنگ تغذیه ml/h 2 بهترین عملکرد را داشته است. بدین ترتیب، با تهیه نانوالیاف و نیز استفاده از مواد آزمایشگاهی نسبتاً ارزان، در مقایسه با روش­های پرهزینه تصفیه آب، نتایج قابل­توجهی در روندارزیابی وتحلیل حذف فلز سمی مس (%50<) در کلیه نمونه­های منتخب مشاهده گردید، که حکایت از تأثیرگذاری مثبت و بالای نانوذرات ونانوالیاف­ها داشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Environmental and Peaceful Application of Nanoparticles-Nanofibers in Treatment of Contaminated Irrigation Waters and Toxic Drainage Effluents (Case Study of Toxic Copper Ion)

نویسندگان [English]

  • Sayyed Hadi Abtahi 1
  • MohammadTaghi Ahmadi 2
  • Mahdi Mahmoudian 3
  • Morteza Shokri 4
1 Ph.D. of Water Sciences & Engineering, Urban Human Ecology Research Group of Kargosha
2 Associate Professor, Department of Physics, Faculty of Science, Urmia University, Urmia
3 Assistant Professor, Department of Nanotechnology, Faculty of Science, Urmia University, Urmia
4 Assistant Professor, Department of Civil Engineering, Bu–Ali Sina University, Kabodarahang Engineering Faculty, Hamedan, Iran
چکیده [English]

Todays, the application of science and advanced technologies, the management of quality risks imposed on environmental resources, has particular importance. Considering the toxicity of wastewater agricultural, industrial, and domestic effluents on the environment, a thorough and separate study of the toxic wastewater treatment and contaminated water, in general, seems necessary to complete the non-destructive development process. In this regard, to recover compounds containing heavy metals and pollutants such as copper, in wastewater containing harmful fertilizers and pesticides, the production of nanofibers (polymer nanoparticles) in the form of electrospray (under four treatments of solute concentration, applied voltage, Injection Needle and Injection rate), using electrospinning machine and selected polymeric Polyacrylamide Methacrylate and Dimethylmethyl Formamide solvent with using the low-cost raw materials approach for the selected hazardous pollutants. The nanoparticle production technology was used in the form of wire blasting (under four concentrations of nanoparticle solution concentration, the diameter of carbon wires used, flow and arc force), also. Finally, by extracting the results in each phase, their analysis was carried out and the results showed that the combination of the polymer treatment with dimethylformamide solvent at 25 wt%, applied voltage kV. 30, the distance between the tip of the needle and the plate 15 cm and the feeding rate of 2 ml / h worked best. Thus, with the preparation of nanofibers and the use of relatively inexpensive laboratory materials, compared to the costly methods of water treatment, significant results were observed in the process of removal of toxic copper > 50% in all selected samples indicated a positive and high effect of the nanoparticles-nanofibers.

کلیدواژه‌ها [English]

  • Copper ion
  • Environmental protection
  • Electrospinning
  • Nanoparticles-nanofibers
  • Water treatment
  • Wire explosion
حسینی، س.ه.، رستگار، س.، و رضایی، ح. 1397. بررسی کارایی جاذب نانولیف لیگنوسلولزی در حذف مس از محلول های آبی، مجله محیط زیست و مهندسی آب، ۴،۲: ۱۱۵-۱۲۲.
شاه­ولی، م.، و عابدی سروستانی، احمد. 1385. بررسی و بهینه‌سازی سازه‌های بومی جمع‌آوری آب در مراتع خشک و نیمه خشک جغرافیایی استان فارس.‎ نشریه تحقیقات جغرافیائی،1.21: 74-101.
پی نبر، ف.، سبحان اردکانی، س.، و ریاحی خرم، م. بررسی کارایی تالاب مصنوعی سطحی حاوی گیاه نی در حذف برخی پیراسنجه-های شیمیایی فاضلاب شهرک صنعتی بوعلی. فصلنامه علوم و تکنولوژی محیط زیست، 5،21: 1-8.
قدمی، س.م.، قهرمان، ب.، شریفی، م.، و رجبی مشهدی، ح. 1388. بهینه سازی بهره برداری از سیستم های چند مخزنی منابع آب با استفاده از الگوریتم ژنتیک. مجله تحقیقات منابع آب ایران، 2،5: 1-15.
عینالی، ج.، کاظمی، ن.، چراغی، م.، و رابط، ع. 1395. تحلیلی بر آگاهی و عملکرد زیستی کشاورزان در نواحی روستایی (مطالعه موردی: شهرستان ارومیه). فصلنامه علوم و تکنولوژی محیط زیست. 18،2: 395-405.
ملکوتیان, م.، گلپایگانی، ع.، و رجبی زاده، ا. 1394. بررسی کارایی فرایند نانوفیلتراسیون در حذف فلزات سنگین سرب، کادمیم، کروم شش ظرفیتی و مس از آبهای حاوی سولفات. مجله آب و فاضلاب, 25،5: 13-20.
Ali, I., and Aboul-Enein, H.Y. 2005. Chiral pollutants: distribution, toxicity and analysis by chromatography and capillary electrophoresis. John Wiley & Sons.‏
Burger, C., Hsiao, B. S., and Chu, B. 2006. Nanofibrous materials and their applications. Annu. Rev. Mater. Res., 36, 333-368.‏
Anton, F. 1934. U.S. Patent No. 1,975,504. Washington, DC: U.S. Patent and Trademark Office.‏
Forutan R., Ehsandoost E., Hadipour S., Mobaraki Z., Saleki M. and Mohebbi G. 2016. Kinetic and equilibrium studies on the adsorption of lead by the chitin of pink shrimp (Solenocera melantho). Entomol. Appl. Sci. Lett., 3, 20–26.
Gopal, R., Kaur, S., Feng, C.Y., Chan, C., Ramakrishna, S., Tabe, S., and Matsuura, T. 2007. Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal. Journal of membrane science, 289(1-2): 210-219.‏
Habibi S. and Hashemi S. H. 2013. Nanotechnology in Textile, Amirkabir University, 140 pp.
Hamissa, A.M., Lodi, M., Seffen, E., Finocchio, R. and Botter, A. 2010. Converti, Sorption of Cd (II) and Pb (II) from aqueous solutions onto Agave Americana fibers. Chemical Engineering Journal, 159: 67–74.
Haider, S., Al-Zeghayer, Y., Ali, F.A.A., Haider, A., Mahmood, A., Al-Masry, W.A., and Aijaz, M.O. 2013. Highly aligned narrow diameter chitosan electrospun nanofibers. Journal of Polymer Research, 20(4), 1-11.‏
Henneberry, Y.K., Kraus, T.E.C., Fleck, J.A., Krabbenhoft, D.P., Bachand, P.M. and Horwath, W.R. 2011. Removal of inorganic mercury and methylmercury from surface waters following coagulation of dissolved organic matter with metal-based salts. Science of the Total Environment, 409: 631–637.
Hutchison, A., Atwood, D., and Santilliann-Jiminez, Q.E. 2008. The removal of mercury from water by open chain ligands containing multiple sulfurs. Journal of Hazardous Materials, 156: 458–465.
Kiani, S., Mousavi, S.M., Shahtahmassebi, N., and Saljoughi, E. 2015. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol. J. Appli. Sur. Sci., 359, 252-258.
Laudenslager, M.J. and Sigmund, W.M. 2012. Electrospinning: Encyclopedia of Nanotechnology. Springer Publishers. 769–775.
Li, R., Liu, L. and Yang, F. 2013. Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II). Chemical Engineering Journal, 229: 460–468.
Lee, A., Elam, J.W., and Darling, S.B. 2016. Membrane materials for water purification: design, development and application, Environ. Sci. Water Res. Technol., 2: 17-42.
Megelski, S.S., J.S., Chase, D.B., and Rabolt, J.F. 2002. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules. 35: 8456-8466.
Mohamed, N. 2019. Heavy metals assessment (Fe, Zn, Mn) in vegetables planted at different topographical area: a review. Student Project. Faculty of Plantation and Agrotechnology, Jasin, Melaka.
Monteagudo, M., Monteagudo, J. and Ortiz, M. 2000. Removal of inorganic mercury from mine waste water by ion exchange. Journal of Chemical Technology, 75: 767–772.
Nemerow N.L. and Dasgupta A. 1991. Industrial and hazardous waste treatment. New York.
Pamukoglu M.Y. and Kargi F. 2006. Batch kinetics and isotherms for biosorption of copper (II) ions onto pretreated powdered waste sludge (PWS). Hazard. Mater., 138,3: 479-484.
Pillay V., Dott C., Choonara Y. E., Tyagi C., Tomar L., Kumar P., du Toit L.C. and Ndesendo V.M.K. 2013. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J. Nanomater.: 22-35.
Saleh T.A. and Gupta V.K. 2012. Column with CNT/magnesium oxide composite for lead (II) removal from water. Environ. Sci. Pollut. Res., 19,4: 1224-1228.
Schiewer, S. and Balaria, A. 2009. Biosorption of Pb2+ by original and protonated citrus peels: Equilibrium, kinetics, and mechanism. Chemical Engineering Journal, 146: 211–219.
Shamim Z., Saeed B., Amir T., Abo Saied R. and Rogheih, D. 2012. The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J. Eng. Fabrics Fibers, 7,4: 42-48.
Shin, C., and Chase, G.G. 2004. Water-in-oil coalescence in micro-fiber composite filters, AICheE J., 50: 343-350.
Sonune A. and Ghate R. 2004. Developments in wastewater treatment methods. Desal. 167, 55-63.
Tafahi Yazdi M.R., Shirgholami M.A., Jafari S. and Dehghani M. 2018. Study on removal of reactive blue 19 using PVA electrospun nanofibers. J. Environ. Water Eng., 4,1: 23 – 34.
Turek, A., Wieczorek, K., and Wolf, W.M. 2019. Digestion Procedure and Determination of Heavy Metals in Sewage Sludge—an Analytical Problem. Sustainability, 11,6: 1-10.
Urgun-Demirtas, M., Benda, P.L., Gillenwater, P.S., Negri, M.C., Xiong, H. and Snyder, S.W. 2012. Achieving very low mercury levels in refinery wastewater by membrane filtration. Journal of Hazardous Materials, 216: 98–107.
Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E.S., Barkay, T., and Yee, N. 2009. Reduction of Hg (II) to Hg (0) by magnetite. Environmental science & technology, 43(14), 5307-5313.‏
Yu, X., Luo, T., Zhang, Y., Jia, Y., Zhu, B., Fu, X., Liu, J. & Huang, X. 2011. Adsorption of lead (II) on O2-plasma-oxidized multiwalled carbon nanotubes: Thermodynamics, kinetics, and desorption. ACS Applied Materials & Interfaces, 3: 2585–2593.
Zeleny, J. 1935. The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure. J. Franklin Inst., 219,6: 659-675.