تاثیر مدیریت های مختلف آبیاری بر انار رقم رباب نی‌ریز در شهرستان کازرون استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیارپژوهشی بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش

2 استادیار پژوهشی بخش تحقیقات علوم زراعی-باغی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج

3 مربی پژوهشی بخش تحقیقات اقتصادی، اجتماعی و ترویج کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات،

چکیده

اگرچه انار یکی از محصولات باغی مهم کشور است، تحقیقات کمی در خصوص مدیریت آبیاری آن انجام شده است. به منظور بررسی تاثیر مدیریت آبیاری بر عملکرد و بهره وری مصرف آب انار رقم رباب نی‌ریز، آزمایشی در یکی از باغات انار شهرستان کازرون فارس انجام شد. تیمارهای آزمایش شامل انجام آبیاری در مقادیر مختلف تخلیه رطوبت در دسترس خاک 35، 50، 65 و 80 درصد بود. یک تیمار نیز که مدیریت آبیاری آن کاملا توسط باغدار انجام می شد، بعنوان شاهد در نظر گرفته شد. آزمایش در قالب طرح بلوک های کامل تصادفی در سه تکرار اجرا گردید. رطوبت خاک در تیمارهای مختلف با دستگاه رطوبت سنج بلوک گچی اندازه گیری میشد و پس از رسیدن رطوبت خاک به حدود مورد نظر آبیاری به میزان مورد نیاز برای رسانیدن رطوبت خاک به حد ظرفیت مزرعه انجام میشد. باغ به سیستم آبیاری قطره ای مجهز بود و میزان آب آبیاری توسط کنتورهای واسنجی شده اندازه گیری می گردید. آزمایش به مدت دوسال انجام و میزان آب مصرفی، میزان عملکرد محصول و بهره وری آب در تیمارهای مختلف برآورد و با مقایسه میانگین ها مورد بررسی قرار گرفت. با اندازه گیری دمای پوشش سبز گیاه و سایر پارامترهای هواشناسی مورد نیاز، خطوط مبنای تنش بالایی و پایینی از روش ایدسو استخراج گردید. با برآورد هزینه و درآمد، تجزیه و تحلیل اقتصادی نیز انجام شد. نتایج نشان داد که با افزایش کل میزان آب داده شده تا حد 19580 مترمکعب در هکتار(شاهد)، میزان محصول نیز تا نزدیک 36 تن در هکتار افزایش یافت در حالیکه در حد تخلیه رطوبتی 35 درصد، میزان آب مصرفی کل 10511 مترمکعب در هکتار و میزان محصول 28 تن در هکتار بود. میزان بهره وری آب کل در تیمارهای مختلف از 82/1 تا 08/3 کیلوگرم بر مترمکعب متغیر بود که با افزایش مصرف آب، بهره وری کاهش یافت. تفاوت مقادیر بهره وری آب و عملکرد بین دو تیمار تخلیه رطوبتی 35% و 50% از نظر آماری معنی دار نگردید. از نظر اقتصادی بهترین تیمار، تیمار آبیاری در تخلیه رطوبتی 35% بود که با توجه به تحقیقات گذشته می توان آن را به عنوان حد آغاز تنش آبی در درخت انار در نظر گرفت. از خطوط مبنای تنش پایینی و بالایی به دست آمده در این تحقیق که مشابه آن در تحقیقات قبلی مشاهده نشده است، می توان بعنوان ابزاری جهت مدیریت آبیاری درختان انار در منطقه مورد مطالعه و سایر نقاط مشابه بهره جست. بنابراین به طور کلی بهترین تیمار آزمایش، انجام آبیاری در تخلیه رطوبت 35% بود که در مناطق کم آب تا تخلیه رطوبت 50% نیز نتایج مطلوبی به بار می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of different irrigation management on Rabab-Neyriz pomegranate cultivar in Kazerun city of Fars province

نویسندگان [English]

  • Mohammad Ali Shahrokhnia 1
  • Alireza Bonyanpur 2
  • Dadgar Mohammadi 3
1 Associate Professor, Agricultural Engineering Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization(AREEO), Shiraz, Iran.
2 Assistant Professor, Horticulture Crops Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization(AREEO), Shiraz, Iran
3 Economic, Social and Extension Research Department, Fars Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization(AREEO), Shiraz, Iran
چکیده [English]

Although pomegranate is one of the major horticultural products in Iran, little research has been done on its irrigation management. In order to investigate the effect of irrigation management on the yield and productivity of 'Rabab-Neyriz' pomegranate trees, an experiment was conducted in one of the pomegranate orchards of Kazerun city in Fars province. Experimental treatments included irrigation at different amounts of available soil moisture depletion at 35, 50, 65 and 80%. A treatment that was completely irrigated by the orchard owner was also considered as control. The experiment was performed in a randomized complete block design with three replications. Soil moisture was measured in different treatments with gypsum block moisture meter. After the soil moisture reached the desired limits, the required amount of irrigation was applied to bring the soil moisture to the field capacity. The orchard was equipped with drip irrigation system and the amount of irrigation water was measured by calibrated flow meters. The experiment was performed for two years and the amount of water used, the yield and water productivity in different treatments were estimated and evaluated by comparing the average values. By measuring the temperature of plant canopy and other required meteorological parameters, the upper and lower stress baselines were extracted by Idso method. Economic analysis was also performed by estimating cost and revenue. The results showed that with the increase of the total water to 19580 cubic meters per hectare (control), the amount of crop yield also increased to 36 tons per hectare, while at soil moisture depletion of 35%,the total used water was 10511 cubic meter and the yield was 28 tons per hectare.The total water productivity in different treatments varied from 1.82 to 3.08 kg / m3, which decreased with increasing the applied water. Differences in water productivity and yield between the 35 and 50% moisture depletion treatments were not statistically significant. Economically, the best treatment for irrigation was the 35% moisture depletion that according to the previous studies, it can be considered as the beginning of water stress in the pomegranate tree. The lower and upper stress baselines obtained in this study, which has not been reported in previous studies, can be used as a tool to manage the irrigation of pomegranate trees in the study area and other similar regions. Therefore, in general, the best treatment of experiment was irrigation at 35% soil moisture depletion. In low water areas up to 50% soil moisture depletion also brings good results.

کلیدواژه‌ها [English]

  • Soil moisture depletion
  • Water productivity
  • Plant canopy temperature
  • Pomegranate
  • Neyriz
احمدی، ک.، عبادزاده،ح.ر.، حاتمی، ف.، حسین­پور، ر.، و عبدشاه، ه. 1397. آمارنامه کشاورزی سال 1396، جلد سوم: محصولات باغبانی، وزارت جهاد کشاورزی، معاونت برنامه­ریزی و اقتصادی، مرکزفناوری اطلاعات و ارتباطات.
راد، م.ه.، اصغری، م.ر.، و عصاره، م.ح. 1394. اثر تنش خشکی بر رشد، عملکرد و کیفیت میوه انار (Punica granatum L.)رقم رباب نی ریز در شرایط اقلیمی خشک. مجله به زراعی نهال و بذر، 31 (1): 75-90.
شاهرخ نیا، م.ع.، و کرمی، م.ج. 1396. بررسی اثر مقادیر مختلف آب آبیاری بر عملکرد انگور یاقوتی. مجله مهندسی آبیاری و آب، 28: 108-122.
شاهرخ نیا، م.ع.، جوکار، ل. و رخشنده رو، م. 1395. بررسی تنش آبی با استفاده از شاخص های دمای برگ و رطوبت خاک بر عملکرد و بهره وری مصرف آب گوجه فرنگی نشایی. مجله مهندسی آبیاری و آب، 26: 97-111.
طاوسی، م.، کاوه، ف.، علیزاده، ا.، بابازاده، ح.، و تهرانی فر، ع. 1395. اثر کم آبیاری و شوری بر میوه انار رقم شیشه کپ (مطالعه موردی شهرستان فردوس، خراسان جنوبی). نشریه آبیاری و زهکشی ایران، 10(4): 499-507.
کاوند، م.، ارزانی، ک.، برزگر، م.، و میرلطیفی، م. 1396. تاثیر سایبان، محلول پاشی کائولین، تنک میوه و آبیاری تکمیلی بر کاهش عارضه سفیدشدگی آریل انار رقم ملس ترش ساوه. مجله به زراعی نهال و بذر، 33(1): 85-112.
Ayars, J.E., Phene, C.J., Phene, R.C., Gao, S., Wang, D., Day, K.R., and Makus, D.J. 2017. Determining pomegranate water and nitrogen requirements with drip irrigation. Agricultural Water Management, 187: 11-23.
Bugueño, F., Livellara, N., Varas, F., Undurraga, P., Castro, M., and Salgado, E. 2016.Responses of young Punica granatum plants under four different water regimes. Ciencia e Investigacion.Agraria. 43(1): 49-56.
Chopade, S.Q., Gorantiwar, S.D., Pampattiwar, P.S., and Supe, V.S. 2001.Response of pomegranate to drip, bubbler and surface irrigation methods. Advances in Horticulture and Forestry. 8: 53–59.
Clawson, K.L., and Blad, B.L. 1982. Infrared thermometry for scheduling irrigation of corn. Agronomy Journal, 74: 311-316.
Cremona, M.V., Stutzler, H. and Kage, H. 2004. Irrigation scheduling of Kohlrabi using crop water stress index. Horticultural Science, 39(2): 276-279.
Dinc, N., Aydinsakir, K., Isik, M., Bastug, R., Ari, N., Sahin, A., and Buyuktas, D. 2018.Assessment of different irrigation strategies on yield and quality characteristics of drip irrigated pomegranate under Mediterranean conditions. Irrigation Science, 36: 87–96.
Erdem, Y., Sehirali, S., Erdem, T. and Kenar, D. 2006. Determination of crop water stress index for irrigation scheduling of bean (Phaseolus vulgaris L.). Turkish Journal of Agriculture and Forestry. 30:195-202.
Erdem, Y., Erdem, T., Orta, H. and Okursoy, H. 2005. Irrigation scheduling for watermelon with crop water stress index (CWSI). Journal of Central European Agriculture. 6: 449-460.
Holland, D., Hatib, K., and Bar-Yáakov, I. 2009. Pomegranate: botany, horticulture, breeding.  In: Horticultural Reviews, Janick, J. (ed.), 35, Wiley-BlackWell Publication.
Idso, S.B. 1982. Non-water stressed base line: A key to measuring and interpreting plant water stress. Agricultural Meteorology. 27: 59-70.
Idso, S.B., Jackson, R.D., Pinter, P.J., Reginato, R.J. and Hatfield, J.L. 1981. Normalizing the stress-degree day parameter for environmental variability, Agricultural Meteorology. 24: 45-55.
Intrigliolo, D.S., Bonet, L., Nortes, P.A., Puerto, H., Nicolas, E., and Bartual, J. 2013. Pomegranate trees performance under sustained and regulated deficit irrigation. Irrigation Science, 31: 959-970.
Kumar, S., Singh, R., Asrey, R., and Nangare, D.D. 2012.Techno-economic evaluation of integrating canal water harvesting and drip irrigation for pomegranate production in a dry eco-region. Irrigation and Drainage. 61(3): 366-374.
Laribi, A.I., Palou, L., Intrigliolo, D.S., Nortes, P.A., Rojas-Argudo, C., Taberner, V., Bartual, J., and Perez-Gago, M.B. 2013.Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. 'Mollar de Elche' at harvest and during cold storage. Agricultural Water Management. 125: 61-70.
Lobo, F.A., Oliva, M.A., Resende, M., Lopes, N.F., and Maestri, M. 2004.Infrared thermometry to schedule irrigation of common bean. Pesquisa Agropecuaria Brasileira. 39: 113-121.
Marathe, R.A., Babu, K.D., and Chaudhari, D.T. 2018. Nutrient uptake, growth and yield of pomegranate as influenced by irrigation frequencies under light textured soils. Journal of Environmental Biology, 39: 143-148.
Mena, P., Galindo, A., Collado-Gonzalez, J., Ondona, S., Garcia-Viguera, C., Ferreres, F., Torecillas, A., and Gil-Izquierdo, A. 2013. Sustained deficit irrigation affects the colour and phytochemical characteristics of pomegranate juice.  Journal of the Science of Food and Agriculture. 93: 1922-1927.
Parvizi, H., Sepaskhah, A.R., and Ahmadi, S.H. 2016. Physiological and growth responses of pomegranate tree (Punica granatum L. cv. Rabab) under partial root zone drying and deficit irrigation regimes. Agricultural Water Management, 163:146-158.
Parvizi, H., Sepaskhah, A.R., and Ahmadi, S.H. 2014.Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum L. cv. Rabab) orchard. Agricultural Water Management, 146: 45-56.
Selahvarzi, Y., Zamani, Z., Fatahi, R., and Talaei, A.R. 2017. Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar). Agricultural Water Management. 192: 189-197.
Sepaskhah, A.R., and Kashefipour, S.M. 1995. Evapotranspiration and crop coefficient of sweet lime under drip irrigation. Agricultural Water Management. 27: 331-340.
Steele, D.D., Stegman, E.C., and Knighton, R.E. 2000. Irrigation management for corn in the northern Great Plains, USA. Irrigation Science. 19(3): 107-114.
Tavousi, M., Kaveh, F., Alizadeh, A., Babazadeh, H., and Tehranifar, A. 2015.Effects of drought and salinity on yield and water use efficiency in pomegranate tree. Journal of Materials and Environmental Science. 6 (7): 1975-1980.
Zhang, H., Wang, D., Ayars, J.E., and Phene, C.J. 2017. Biophysical response of young pomegranate trees to surface and sub-surface drip irrigation and deficit irrigation. Irrigation Science. 35: 425-435.