مدل‌سازی ضریب دبی دریچه‌های قطاعی در شرایط جریان مستغرق با استفاده از روش‌های پایه کرنلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه مهندسی آب، دانشکده عمران دانشگاه تبریز، تبریز، ایران

2 دانشجوی کارشناسی ارشد مهندسی آب و سازه‌های هیدرولیکی، دانشکده عمران دانشگاه تبریز، تبریز، ایران

3 دانشجوی دکتری مهندسی آب و سازه‌های هیدرولیکی، دانشکده عمران دانشگاه تبریز، تبریز، ایران

چکیده

تخمین ضریب دبی جریان در دریچه‌ها از جمله مسائل اساسی در علوم مربوط به مهندسی آب می‌باشد. در سال های اخیر روابط نیمه تجربی مختلفی به منظور تخمین ضریب دبی دریچه های قطاعی توسعه داده شده که کاربرد این روابط در شرایط جریان مستغرق با خطاهای بزرگی همراه بوده است. هدف از تحقیق حاضر استفاده از روش‌های قدرتمند رگرسیون فرایند گاوسی (GPR) و ماشین بردار پشتیبان (SVM) به‌منظور تخمین ضریب دبی دریچه های قطاعی در شرایط جریان مستغرق و مقایسه نتایج حاصل با روش‌های نیمه تجربی مرسوم می‌باشد. بدین منظور مجموعه ی وسیعی شامل 2136 داده آزمایشگاهی مورد استفاده قرار گرفته و پس از تعریف پارامترهای بدون بعد مختلف، عملکرد روش‌های مذکور مورد ارزیابی قرار گرفت. نتایج به دست آمده کارآیی بالای روش های به کار گرفته شده را نسبت به روش های تجربی به خوبی نشان داد. بررسی مدل های مختلف نشان داد رگرسیون فرآیند گاوسی به همراه پارامترهای ورودی y0-yt/w و yt/w با دارا بودن مقادیر R=0.983، NSE=0.967 و RMSE=0.027 عملکرد بهتری نسبت به ماشین بردار پشتیبان و سایر روش های نمیه تجربی در تخمین ضریب دبی دیچه‌های قطاعی در شرایط جریان مستغرق دارا می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling discharge coefficient of radial gates under submerged conditions using kernel-based approaches

نویسندگان [English]

  • Kiyoumars Roushangar 1
  • arman alirezazadeh sadaghiani 2
  • Saman Shahnazi 3
1 Professor, Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Irann
2 M.Sc Student, Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
3 Ph.D Student, Department of Water Engineering, Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran
چکیده [English]

Prediction of flow discharge coefficient of gates is one of the essential issues in water engineering sciences. In recent years, various semi-empirical equations have been developed in order to predict the discharge coefficient of radial gates that the application of these formulas under submerged flow conditions suffered from large errors. The aim of present study is to apply robust Gaussian Process Regression (GPR) and Support Vector Machine (SVM) to predict discharge coefficient of radial gates under submerged flow conditions and compare the obtained results with well-known semi-empirical approaches. For this purpose, an extensive experimental dataset comprises 2136 data points were used to feed the utilized methods. Different combinations of dimensionless parameters were prepared and the performance of aforementioned methods were assessed. The obtained results showed that GPR method with input parameters of y0-yt/w and yt/w yields a correlation coefficient (R) of 0.983, a Nash- Sutcliffe efficiency (NSE) of 0.967 and root mean squared error (RMSE) of 0.027 and indicated superior performance compared with employed SVM and other semi-empirical approaches.

کلیدواژه‌ها [English]

  • Flow conditions
  • Prediction accuracy
  • Gaussian Process Regression
  • Support Vector Machine
امین پور، ی.، فرهودی، ج. و خلیلی شایان، ح. 1392. بررسی آزمایشگاهی و صحرایی دریچه های قطاعی به عنوان سازه اندازه گیری جریان تحت شرایط آزاد و مستغرق. مجله آب و خاک، 28(4): 695-707.
روشنگر، ک.، فرودی خور، ع. و صانعی، م. 1396. تعیین پارامترهای تاثیرگذار بر ضریب دبی سرریزهای اوجی قوس محور با استفاده از روش ماشین بردار پشتیبان(SVM)  و مقایسه با روش شبکه فازی- عصبی تطبیقی.(ANFIS)  نشریه آبیاری و زهکشی ایران، 11(4): 647-657.
روشنگر،ک. و قاسم‌پور، ر. 1397. بررسی عملکرد روشهای کلاسیک و هوش مصنوعی در تخمین ضریب زبری در پیچانرودها. نشریه آبیاری و زهکشی ایران، 12(4): 811-822.
نوری، م.، سلماسی،  ف. 1398. بررسی آزمایشگاهی تاثیر آستانه بر ضریب دبی دریچه قطاعی در شرایط جریان آزاد. نشریه مهندسی عمران امیرکبیر, 51(1): 157-168.
Abdelhaleem, F. S. F. 2017. Hydraulics of submerged radial gates with a sill. ISH Journal of Hydraulic Engineering. 23(2): 177-186.
Ansar, M. and Ferro, V. 2001. Simultaneous Flow over and under a Gate. Journal of Irrigation and Drainage Engineering. 127(5): 325-328.
Bijankhan, M., Ferro, V. and Kouchakzadeh, S. 2013. New stage-discharge relationships for radial gates. Journal of irrigation and drainage engineering. 139(5): 378-387.
Bijankhan, M., Kouchakzadeh, S. and Bayat, E. 2011. Distinguishing condition curve for radial gates. Flow Measurement and Instrumentation. 22(6): 500-506.
Buyalski, C. P. 1983. Discharge algorithms for canal radial gates, REC-ERC-83-9, Engineering and Research Center, U.S. Bureau of Reclamation, Denver.
Clemmens, A. J., Strelkoff, T. S., and Replogle, J. A. 2003. Calibration of submerged radial gates. Journal of Hydraulic Engineering. 129(9): 680–687.
Dehghani A. A. and Meshkati Shahmirzadi M. E. 2008. Assessment of radial gate's discharge coefficient by using genetic algorithm. Scientific Journal of Gorgan University of Agriculture and Natural Resources, Iran. (In Persian).
Dehghani, A.A., Suzuki, K., Hashemi, F. and Salmatian, A.S. 2007. Estimation of the discharge coefficient of canal radial gates using artificial neural network. IAHR-International Congress on water engineering, Venice, Italy, Pp: 221-230.
Guo, Y. X., Guo, X. L., Wang, Y. S., Wang, T., Fu, H., & Li, J. Z. 2020. Flow condition identification and discharge calibration for submerged radial gates. Journal of Hydraulic Research. 1-8.
Han, D., Chan, L. and Zhu, N. 2007. Flood forecasting using support vector machines. Journal of hydroinformatics. 9(4): 267-276.
Metzler, D.E. 1948. A Model Study of Tainter Gate Operation. M.Sc. thesis, Iowa State University, Iowa City, IA, USA.
Pal, M. and Deswal, S. 2010. Modelling pile capacity using Gaussian process regression. Computers and Geotechnics. 37(7-8): 942-947.
Rady, R. A. E. H. 2016. Modeling of flow characteristics beneath vertical and inclined sluice gates using artificial neural networks. Ain Shams Engineering Journal. 7(2): 917-924.
Rasmussen, C. E. and Williams, C. K. 2006. Gaussian process for machine learning. MIT press.
Shahrokhnia, M.A. and Javan, M. 2006. Dimensionless Stage-Discharge Relationship in Radial Gates. Journal of Irrigation and Drainage Engineering. 132(2): 180-184.
Shahrokhniya, M.A. and Javan, M. 2005. Obtained of discharge coefficient in radial gates. Hydraulic Magazine, 1: 1-11.
Shayan, H. K., Farhoudi, J. and Roshan, R. 2014. Estimation of flow discharge under the sluice and radial gates based on contraction coefficient. Iranian Journal of Science and Technology. Transactions of Civil Engineering. 38(C2): 449.
Toch, A. 1955. Discharge characteristics of Tainter gates. ASCE Trans. Am. Soc. Civ. Eng. 120: 290–300.
Vapnik, V. 1998. Statistical learning theory Wiley, New York. 1: 624.
Wahl, T. and Clemmens, A. 2005 Applying the Energy-Momentum Method to Radial Gate Discharge Calibration. Impacts of Global Climate Change: 1-10.
Wahl, T. L. 2005. Refined energy correction for calibration of submerged radial gates. Journal of Hydraulic Engineering. 131(6): 457-466.
Zahedani, M. R., Keshavarzi, A., Javan, M. and Shahrokhnia, M. A. 2012. New equation for estimation of radial gate discharge. In Proceedings of the Institution of Civil Engineers-Water Management. 165(5): 253-263.
Zheng, H., Lei, X., Shang, Y., Cai, S., Kong, L. and Wang, H. 2017. Parameter identification for discharge formulas of radial gates based on measured data. Flow Measurement and Instrumentation. 58: 62-73.