تخمین معکوس ضریب زبری مانینگ با استفاده از مدل WinSRFR و بررسی تغییرات آن در رخدادهای مختلف آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی آبیاری و آبادانی دانشگاه تهران

2 دانشیار گروه مهندسی آبیاری و آبادانی دانشکده کشاوزی دانشگاه تهران

چکیده

روش‌های مختلفی به منظور تخمین ضریب زبری مانینگ توسعه یافته است که از این بین روش‌ معکوس کاربرد فراوانی دارد. این تحقیق با هدف تخمین معکوس ضریب زبری مانینگ و ضرایب نفوذ معادله کوستیاکف-لوئیس با استفاده از مدل WinSRFR در آبیاری جویچه ای و بررسی تغییرات آن‌ها در آبیاری‌های مختلف انجام شد. بدین منظور دو دبی ورودی (به طور متوسط 27/0 و 53/0 لیتر بر ثانیه)، دو دور آبیاری (5 و 10 روز)، دو مزرعه با بافت خاک متفاوت (E و F) و در سه واقعه آبیاری (اول تا سوم) و در سه تکرار در نظر گرفته شد. خطای مدل در تخمین زمان پیشروی، زمان پسروی و حجم آب نفوذ یافته با استفاده از شاخص‌های آماری خطای نسبی (RE)، ریشه دوم میانگین مجذور خطا (RMSE) و ریشه دوم میانگین مجذور خطای نرمال شده (NRMSE) بررسی شد. مقادیر این شاخص‌ها در تخمین زمان پیشروی در مزرعه E به ترتیب 44/0 درصد، 21/0 دقیقه و 11/1 درصد در مجموع هر سه رخداد آبیاری تعیین شد. همچنین مقادیر این شاخص‌ها به ترتیب 58/1 درصد، 25/5 دقیقه و 78/2 درصد در زمان پسروی و 59/0 درصد، 05/5 لیتر و 50/0 درصد در حجم آب نفوذ یافته به دست آمد. خطای تخمین زمان پیشروی و پسروی در مزرعه F کمتر بود که این نتایج دقت بسیار خوب روش تخمین معکوس را در تعیین ضریب زبری مانینگ نمایان کرد. نتایج همچنین نشان داد که در مزرعه E حداقل و حداکثر مقدار ضریب زبری مانینگ به ترتیب 017/0 و 34/0 و به طور متوسط 075/0 در مجموع هر سه رخداد آبیاری بود و در مزرعه F ضریب زبری مانینگ در هر سه رخداد آبیاری حداقل 015/0، حداکثر 09/0 و به طور متوسط 041/0 برآورد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Inverse estimation of Manning roughness coefficient using WinSRFR model and investigating its variations in different irrigation events

نویسندگان [English]

  • Hadi Rezaei Rad 1
  • Hamed Ebrahimian 2
  • Abdolmajid Liaghat 1
1 Dept. of Irrigation & Reclamation Eng. College of Agriculture and Natural Resources University of Tehran
2 Associate professor, Department of Irrigation and Reclamation Eng., College of Agriculture and Natural Resources, University of Tehran.
چکیده [English]

Various methods have been developed to estimate the Manning roughness coefficient, of which the inverse method is widely used. This study aimed to estimate the inverse of Manning roughness coefficient using the WinSRFR model and estimating infiltration parameters of Kostiakov-Lewis equation in furrow irrigation and to investigate their variations in different irrigation events. For this purpose, two inflow discharges (average 0.27 and 0.53 liters per second), two irrigation cycles (5 and 10 days), two fields with different soil texture (E and F) in three irrigation events (first to third) were considered in three replications. Model error in estimating advance and recession time, and volume of infiltrated water was investigated using statistical indices including RE, RMSE and NRMSE. The values of these indices in estimating the advance time in the field E were 0.44%, 0.21 min and 1.11% in the total three irrigation events, respectively. Also, the values of these indices were 1.58%, 5.25 min and 2.78% in the recession time and 0.59%, 5.5 liters and 0.50% in the volume of infiltrated water, respectively. There was less error in estimating the advance and recession time in the field F which showed the excellent accuracy of the inverse estimation method using the WinSRFR model in determining the Manning roughness coefficient. The results also showed that in the field E, the minimum and maximum values of Manning roughness coefficient were estimated as 0.017 and 0.34 and on average 0.075 in the total three irrigation events, respectively. In the field F, the minimum, maximum and the average values of Manning roughness coefficient in three irrigation events were 0.015 and 0.09 and 0.041, respectively.

کلیدواژه‌ها [English]

  • Advance
  • Furrow irrigation
  • Infiltrated water volume
  • Recession
برادران، ر. 1389. بررسی اثر عملیات تهیه زمین بر روی ضرایب هیدرودینامیک خاک در آبیاری جویچه‌ای. پایان‌نامه کارشناسی ارشد آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
رمضانی اعتدالی، ه.، لیاقت، ع.، و عباسی، ف. 1388. ارزیابی مدل Evalue  برای تخمین ضریب زبری مانینگ در آبیاری جویچه‌ای. مجله تحقیقات مهندسی کشاورزی. 10(3): 83–94.
زرعکانی، ک.، رمضانی اعتدالی، ه.، و دانش کار آراسته، پ. 1398. برآورد ضرایب نفوذ و ضریب زبری مانینگ در دو رژیم جریان پیوسته و کاهشی. نشریه حفاظت منابع آب و خاک. 9(2): 89–101.
ضیایی، غ.، عباسی، ف.، بابا زاده، ح.، و کاوه، ف. 1395. بررسی تغییرات زمانی ضرایب نفوذ آب در خاک در آبیاری جویچه‌ای. تحقیقات آب و خاک ایران. 47(2): 229–236.
طباطبایی، س. ح.، فرداد، ح.، نیشابوری، م.، و لیاقت، ع. 1385. مدل شبیه‌سازی تغییرات زمانی معادله نفوذ کوستیاکف-لوئیس در دو مدیریت زراعی خاک‌های درز و ترک‌دار. علوم و فنون کشاورزی و منابع طبیعی. 10(1): 55–68.
کازرونیان، س. م.، عباسی، ف.، و صدقی، ح. 1396. مطالعه آماری تغییرات پارامترهای نفوذ معادله کوستیاکف-لوئیس درآبیاری جویچه‌ای طی سه فصل زراعی. نشریه پژوهش‌های حفاظت آب و خاک. 24(4): 83–101.
مکاری قهرودی، ا.، لیاقت، ع.، و نحوی نیا، م. ج. 1392. کاربرد مدل WinSRFR3.1 در شبیه‌سازی آبیاری جویچه‌ای. نشریه آبیاری و زهکشی ایران. 7(1): 59–67.
ناصری، ا. 1395. تحلیل آماری ضریب زبری مانینگ در کانال‌های خاکی بدون پوشش گیاهی در شبکه آبیاری و زهکشی مغان. نشریه آب و خاک. 30(6): 1808–1819. https://doi.org/10.22067/jsw.v30i6.41146
Abbasi, F., Shooshtari, M. M. and Feyen, J. 2003. Evaluation of various surface irrigation numerical simulation models. Journal of Irrigation and Drainage Engineering. 129(3): 208–213. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(208)
Adamala, S., Raghuwanshi, N. S. and Mishra, A. 2014. Development of surface irrigation systems design and evaluation software (SIDES). Computers and Electronics in Agriculture 100: 100–109. https://doi.org/10.1016/j.compag.2013.11.004
Amiri, M. J., Bahrami, M., Hamidifar, H. and Eslamian, S. 2016. Modification of furrow Manning’s roughness coefficient estimation by finite difference technique under surge and continuous flow. International Journal of Hydrology Science and Technology. 6(3): 226–237. https://doi.org/10.1504/IJHST.2016.077390
Anwar, A. A., Ahmad, W., Bhatti, M. T. and Ul Haq, Z. 2016. The potential of precision surface irrigation in the Indus Basin Irrigation System. Irrigation Science. 34(5): 379–396. https://doi.org/10.1007/s00271-016-0509-5
Bahmani, O., Akhavan, S., Khoramian, M. and Gholizadeh Khalteh, G. 2020. Effect of different tillage methods and furrow spacing on soil hydraulic characteristics in furrow irrigation. Irrigation Sciences and Engineering. 43(1): 145–156. https://doi.org/10.22055/jise.2018.24226.1712
Bautista, E., Clemmens, A. J. and Strelkoff, T. S. 2009. Structured application of the two-point method for the estimation of infiltration parameters in surface irrigation. Journal of Irrigation and Drainage Engineering. 135(5): 566–578. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000054
Bautista, Eduardo, Clemmens, A. J., Strelkoff, T. S. and Niblack, M. 2009. Analysis of surface irrigation systems with winsrfr—example application. Agricultural Water Management. 96(7): 1162–1169. https://doi.org/10.1016/j.agwat.2009.03.009
Bautista, Eduardo, Clemmens, A. J., Strelkoff, T. S. and Schlegel, J. 2009. Modern analysis of surface irrigation systems with WinSRFR. Agricultural Water Management. 96(7): 1146–1154. https://doi.org/10.1016/j.agwat.2009.03.007
Bo, C., Zhu, O. and Shaohui, Z. 2012. Evaluation of hydraulic process and performance of border irrigation with different regular bottom configurations. Journal of Resources and Ecology. 3(2): 151–160. https://doi.org/10.5814/j.issn.1674-764x.2012.02.007
Bogel, T., Osinenko, P. and Herlitzius, T. 2016. Assessment of soil roughness after tillage using spectral analysis. Soil & Tillage Research. 159: 73–82. https://doi.org/10.1016/j.still.2016.02.004
Burguete, J., Lacasta, A. and García-Navarro, P. 2014. SURCOS: A software tool to simulate irrigation and fertigation in isolated furrows and furrow networks. Computers and Electronics in Agriculture. 103: 91–103. https://doi.org/10.1016/j.compag.2014.02.004
Childs, j. l., Wallender, W. W. and Hopmans, W. 1993. Spatial and seasonal variation of furrow infiltration. Journal of Irrigation and Drainage Engineering. 119(1): 74–90.
Chow, V. T. 1959. open-channel hydraulicd. McGRAW-HILL BOOK COMPANY.
Clemmens, A. J., Eisenhauer, D. E., and Maheshwari, B. L. 2001. Infiltration and roughness equations for surface irrigation: how form influences estimation. ASAE Meeting Paper No. 01-2255, 1–19.
Dewedar, O. M., Mehanna, H. M., and El-shafie, A. F. 2019. Validation of winsrfr for some hydraulic parameters of furrow irrigation in egypt. Plant Archives. 19(2): 2108–2115.
Ebrahimian, H. 2014. Soil infiltration characteristics in alternate and conventional furrow irrigation using different estimation methods. KSCE Journal of Civil Engineering. 18(6): 1904–1911. https://doi.org/10.1007/s12205-014-1343-z
Ebrahimian, H. and Liaghat, A. 2011. Field evaluation of various mathematical models for furrow and border irrigation systems. Soil and Water Research, 6(2), 91–101.
Gillies, M. H. and Smith, R. J. 2015. SISCO: surface irrigation simulation, calibration and optimisation. Irrigation Science. 33(5): 339–355. https://doi.org/10.1007/s00271-015-0470-8
González, C., Cervera, L. and Moret-Fernández, D. 2011. Basin irrigation design with longitudinal slope. Agricultural Water Management. 98(10): 1516–1522. https://doi.org/10.1016/j.agwat.2011.05.007
Grassi, C. J. 1972. Infiltration characteristics heavy-textured soil. wageningen.
Harun-ur-Rashid, M. 1990. Estimation of Manning’s roughness coefficient for basin and border irrigation. Agricultural Water Management. 18: 29–33.
Jurriens, M., Zerihun, D., Boonstra, J. and Feyen, J. 2001. SURDEV: surface irrigation software. Design, operation, and evaluation of basin, border, and furrow irrigation. International Institute for Land Reclamation and Improvement.
Kamali, P., Ebrahimian, H. and Parsinejad, M. 2018. Estimation of Manning roughness coefficient for vegetated furrows. Irrigation Science. 36(6): 339–348. https://doi.org/10.1007/s00271-018-0593-9
Kassem, M. A. and Ghonimy, M. I. 2011. Determination of Manning roughness coefficient for border irrigation system. Misr Journal of Agricultural Engineering. 28(2): 302–323. https://doi.org/10.21608/mjae.2011.105095
Mailapalli, D. R., Raghuwanshi, N. S., Singh, R., Schmitz, G. H. and Lennartz, F. 2008. Spatial and temporal variation of Manning’s roughness coefficient in furrow irrigation. Journal of Irrigation and Drainage Engineering. 134(2): 185–192. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(185)
Mazarei, R., Soltani Mohammadi, A., Ebrahimian, H. and Naseri, A. A. 2021. Temporal variability of infiltration and roughness coefficients and furrow irrigation performance under different inflow rates. Agricultural Water Management. 245: 106465. https://doi.org/10.1016/j.agwat.2020.106465
Miao, Q., Shi, H., Gonçalves, J. M. and Pereira, L. S. 2015. Field assessment of basin irrigation performance and water saving in Hetao, Yellow River basin: Issues to support irrigation systems modernisation. Biosystems Engineering. 136: 102–116. https://doi.org/10.1016/j.biosystemseng.2015.05.010
Nie, W.-B., Li, Y.-B., Zhang, F., Dong, S.-X., Wang, H. and Ma, X.-Y. 2018. A method for determining the discharge of closed-end furrow irrigation based on the representative value of Manning’s roughness and field mean infiltration parameters estimated using the ptf at regional scale. Water, 10(12), 1825. https://doi.org/10.3390/w10121825
Ramezani Etedali, H., Liaghat, A. and Abbasi, F. 2012. Evaluation of the evalue model for estimating Manning’s roughness in furrow irrigation. Irrigation and Drainage. 61(3): 410–415. https://doi.org/10.1002/ird.650
Salahou, M. K., Jiao, X. and Lü, H. 2018. Border irrigation performance with distance-based cut-off. Agricultural Water Management, 201(November 2016), 27–37. https://doi.org/10.1016/j.agwat.2018.01.014
Sayari, S., Rahimpour, M. and Zounemat-Kermani, M. 2017. Numerical modeling based on a finite element method for simulation of flow in furrow irrigation. Paddy and Water Environment. 15(4): 879–887. https://doi.org/10.1007/s10333-017-0599-6
Sepaskhah, A. R. and Bonder, H. 2002. Estimation of Manning roughness coefficient for bare and vegetated furrow irrigation. Biosystems Engineering, 83(3), 351–357. https://doi.org/10.1006/bioe.2002.0092
Seyedzadeh, A., Panahi, A., Maroufpoor, E. and Singh, V. P. 2019. Development of an analytical method for estimating Manning’s coefficient of roughness for border irrigation. Irrigation Science. 37(4): 523–531. https://doi.org/10.1007/s00271-019-00631-9
Siyal, A. A., Mashori, A. S., Bristow, K. L. and van Genuchten, M. T. 2016. Alternate furrow irrigation can radically improve water productivity of okra. Agricultural Water Management. 173: 55–60. https://doi.org/10.1016/j.agwat.2016.04.026
Walker, W. R. 1987. Surface irrigation theory and practice (1st ed.). https://hdl.handle.net/10568/36729
Walker, W. R. 2003. SIRMOD III surface irrigation simulation, evaluation and design guide and technical documentation. Utah State University.
Walker, W. R. 2005. Multilevel calibration of furrow infiltration and roughness. Journal of Irrigation and Drainage Engineering. 131(2): 129–136. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:2(129)
Weibo, N., Liangjun, F. and Xiaoyi, M. 2012. Estimated infiltration parameters and Manning roughness in border irrigation. Irrigation and Drainage. 61(2). 231–239. https://doi.org/10.1002/ird.624
Xu, J., Cai, H., Saddique, Q., Wang, X., Li, L., Ma, C. and Lu, Y. 2019. Evaluation and optimization of border irrigation in different irrigation seasons based on temporal variation of infiltration and roughness. Agricultural Water Management, 214(23), 64–77. https://doi.org/10.1016/j.agwat.2019.01.003.