بررسی غلظت فلزات سنگین در منابع آب با استفاده از روش‌های مختلف زمین‌آمار- منطقه مورد مطالعه دشت آستانه

نوع مقاله : مقاله پژوهشی

نویسنده

کارشناس‌ارشد گروه محیط‌زیست، دانشکده محیط‌زیست، دانشگاه تهران، تهران، ایران

چکیده

منابع آب‌های زیرزمینی از با ارزش‌ترین منابع ملی، و حفاظت از کیفیت آن حیاتی است. یکی از راه‌های مناسب برای جلوگیری از آلودگی آب‌های زیرزمینی بررسی تغییرات مکانی کیفیت آن‌ها و مدیریت بهره‌برداری از منابع آب و کاربری زمین است. از منظر دقت و اثر درون‌یابی و منشأ، این پژوهش مقایسه‌ای بین روش‌های درون‌یابی OK، RBF و IDW برای غلظت عناصر Pb، Zn و Cd را در منطقه مطالعاتی دشت آستانه تحلیل می‌کند. همچنین اختلاف دقت و عدم قطعیت درون‌یابی و منشأ آلودگی تجزیه و تحلیل شد و نتایج به دست آمده نشان می‌دهد بر اساس توزیع مکانی عناصر، آلوده‌ترین منطقه در جنوب شرقی محدوده در اطراف معدن زغال‌سنگ و سنگ مرمر که در منطقه حفاظت‌شده سیاه‌رود می‌باشد، قرار دارد. از جنوب منطقه به سمت شمال منطقه آلودگی کمتر شده و کمترین مقدار آلودگی در شمال منطقه و نزدیک پارک ملی بوجاق و دریاچه خزر می‌باشد. با توجه به استانداردهای WHO می‌توان دریافت که برای Zn، تمام منطقه محدوده مجاز WHO قرار دارد که حد استاندارد آن mg/L ۱۵ می‌باشد و حداکثر Zn در منطقه mg/L ۱٫۶۴ می‌باشد. برای Pb فقط مناطق کوچک در شمال منطقه در محدوده مجاز قرار دارد. برای Cd مقدار حد مجاز استاندارد جهانی mg/L ۰٫۰۰۳ می‌باشد که با توجه به توزیع مکانی آن تمام منطقه آلوده به این عنصر می‌باشد. عدم‌اطمینان بالاتر عناصر در درجه اول در اطراف معادن توزیع شده است که مربوط به تنوع مکانی عناصر سمی ناشی از دخالت انسان است. علاوه بر فعالیت معدن‌کاری، می‌توان ورود فاضلاب و پساب‌های صنعتی و شهری به منابع آب زیرزمینی را علت آلودگی آب منطقه مورد مطالعه دانست.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Heavy Metal Concentrations in Water Resources Using Different Geostatistical Methods - Astana Plain Study Area

نویسنده [English]

  • Alireza Ahmadi
M.Sc, Department of Environment, Faculty of Environment, University of Tehran, Tehran, Iran
چکیده [English]

Groundwater resources are one of the most valuable national resources, and the protection of its quality is vital. One of the best ways to prevent groundwater pollution is to study the spatial changes in their quality and manage the utilization of water resources and land use. In terms of accuracy and effect of interpolation and origin, this study analyzes a comparison between OK, RBF and IDW interpolation methods for Pb, Zn and Cd . Also, the difference between the accuracy and uncertainty of interpolation and the source of pollution was analyzed and the results show that based on the spatial distribution of elements in the most polluted area in the southeast of the area around the coal and marble mine in the conservation area. Has been blacked out. Pollution has decreased from the south to the north of the region and the lowest amount of pollution is in the north of the region and near Bojagh National Park and Caspian Sea. According to WHO standards, it can be seen that for Zn, the whole area is within the WHO allowable range, the standard limit is 15 mg / L and the maximum Zn in the area is 1.64 mg / L. For Pb only small areas in the north of the area are within the allowable range. For Cd, the permissible limit of the global standard is 0.003 mg / L, which due to its spatial distribution, the whole area is contaminated with this element. Higher uncertainty of the elements is primarily distributed around the mines, which is related to the spatial diversity of toxic elements caused by human intervention. In addition to mining activities, the entry of industrial and municipal wastewater and effluents into groundwater resources can be considered as the cause of water pollution in the study area.

کلیدواژه‌ها [English]

  • Groundwater
  • Interpolation
  • Quality
  • Industrial Effluents
  • Uncertainty
Almeida, J.A., Diniz, Y.S., Marques, S.F.G., Faine, I.A., Ribs, B.O., Burneik, R.C. and Novelli,  E.I.B. 2002. The use of oxidative stress responses as biomarkers in Nile Tilapia (oreochromis niloticus ) exposed to in vivo cadmium contamination. Environment International 27,673-679.
Bably, P., Kumara, P. and Bano, S. 2011. Ground water quality evaluation near mining area and development of heavy metal pollution index. Appl. Water Sci., 2, 130-141.
Baghaie, AH., Khademi, H. and Mohammadi, J. 2007.  Geostatistical analysis of spatial variability of Lead and Nickel around two industrial factories in Isfahan province. Journal of Agricultural Sciences and Natural Resources.;14(2):11-19 (in Persian).
Bhunia, GS., Shit, PK. And  Maiti, R.2016. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal of Saudi Agriculture Science. doi:10.1016/j.jssas.2016.02.001
Cao, S.S., Lu, A.X., Wang, J.H. and Huo, L.L. 2017. Modeling and mapping of cadmium in soils based on qualitative and quantitative auxiliary variables in a cadmium contaminated area. Science Total Environment 580, 430e439.
Chu, H.J., Y.P., Lin, T.K., Jang. 2010. Delineating the hazard zone of multiple soil pollutants bymultivariate indicator kriging and conditioned latin hypercube sampling. Geoderma;158:242-51.
Dorgham, M. M. 2004. Eutrophication problems in the Western Harbour of Alexandria. Egypt. Environment., 75, 51-59.
Eaton, AD., LS. Clesceri , E.W. Rice. 2005. Standard Methods for the Examination of Water and Wastewater. 21, editor. Washington D. C: Amrican Water Works Assocation (AWWA).
EPA. 2002. Lead and Copper Monitoring and Reporting Guidance for Public Water System, Office of Water (4606m), EPA.
Fallahati, A., Soleimani, H., Alimohammadi, M., Dehghanifard, E., Askari, M., Eslami, F. and Karami, L., 2020. Impacts of drought phenomenon on the chemical quality of groundwater resources in the central part of Iranapplication of GIS technique. Environmental Monitoring and Assessment. 192(1):64.
Feizia, Z., Keshtkara, A.R. and Afzali, A., 2019. Using geostatistical and deterministicmodelling to identify spatialvariability of groundwater quality. International Desert Research Center. 24(1):143-151.
Ghazavi, R. and Ramezani Sarbandi, M. 2013. Investigating the Effect of Changes in Precipitation Rates and Groundwater Recovery on Quantitative and Qualitative Changes in Aquifer Water (A Case Study of Rafsanjan Plain) Journal of Hydrogeomorphology, No. 12,111-129.
Gipperth L. and Elmgren R. 2005. Adaptive coastal planning and the European Union’s water framework directive: a Swedish perspective. Ambio, 34(2), 157-162.
Isaaks, E. and Srivastava, M. 1990. An Introduction to Applied Geostatistics. Oxford: Oxford University Press;.
Jones, I., Kille, P. and Sweeney, G. 2001. Cadmiun delays grouth hormone expression during rainbow trout development . Journey of fish Biology 59, 1015- 1022.
Juang, K.W., Liao, W.J., Lio, T.L., Tsui, L. and Lee, D.Y. 2008. Additional sampling based on regulation threshold and kriging variance to reduce the probability of false delineation in a contaminated site. Science Total Environment. 389: 20-8.
Juang, K.W., Chen, Y.S. and Lee, D.Y.  2004. Using sequential indicator simulation to assess the uncertainly of delineating heavy-metal contaminated soils. Environment pollution. 127:229-38.
Khosravi, H., Karimi, K., Nakhaee nejadfard, S. and Mesbahzadeh, T. 2016. Investigation of Spatial Structure of Groundwater Quality Using Geostatistical Approach in Mehran plain, Iran. Pollution. 2(1): 57-65 .
Koponen, S., Pulliainen, J., Kallio K. and Hallikainen, M. 2002. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environment. 79: 51-59.
Li, X and Feng, L. 2010. Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas, (NW, China): Controlling factors and contamination assessments, Journal of Hazardous Materials. 174: 662–669.
Liu, R.M., Chen, Y.X., Sun, C.C., Zhang, P.P., Wang, J.W., Yu, W.W. and Shen, Z.Y. 2014b. Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods. Mar. Pollution Bulletin. 86, 68e75.
Liu, G., Niu, J.J., Zhang, C., Zhao, X. and Guo, G.L. 2014a. Spatial distribution prediction of surface soil Pb in a battery contaminated site. Environment Science. 12, 4712e4719.
Lucassen E. 2004. High groundwater nitrate concentrations inhabit eutrophication of sulphate-rich freshwater wetlands, Biogeochemist. 67(2), 249-267.
Meeger , J.C., Szebedinszky, C., McDonald, D.G. and Wood, C.M. 2000. Effect of chronic sublethal exposure to waterborne Cu, Cd, or Zn in rainbow trout 1: iono regulatory disturbance and metabolic costs . Aquatic Toxicology 50(3), 231-243.
Mohammadi, S. and Sallagagheh, A. 2017. Study of spatial and temporal variations of groundwater quality with the help of the best estimator of pitch statistics (Case study Plain: Kerman Plain). Scientific Journal of Watershed Management Sciences and Engineering. 49 – 60.
Momeni Damaneh, J., Joulaei, F., Alidadi, H. and Peiravi, R. 2015. Evaluatin of interpolatin methods to determine spatil variatins of groundwater Quali-tatie parameters (Case study: Gonabad plain). Iranian Journal of Research in Environmental Health. 1 (3): 165-176. (In Persian)
Nakhaei M., Vadiati M. and Saberi N. 2009. Hydro geochemistry evolution of torbate heydariye plain. Fifteenth Meeting of Geological Society of Iran.
Najafpour, N., Torabi Pudeh, H. and Yonesi, H. A. 2017. "Evaluation of GIS and interpolation methods in determination of spatial distribution and classified groundwater quality", Iranian water research resource. 13 (3): 1-9.
Nickel, S., Hertel, A., Pesch, R., Schroder, W. and Steinnes, E., Uggerud, T.H. 2014. Modelling and mapping spatio-temporal trends of heavy metal accumulation in moss and natural surface soil monitored 1990-2010 throughout Norway by multivariate generalized linear models and geostatistics. Atmosphere and Environment. 99: 85e93.
Qiao X., Zhao C., Shao Q. and Hassan M. 2018. Structural characterization of corn stover lignin after hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Energy Fuel. 32(5): 6022–6030.
Robertson, W. D., Blowes, D. W., Ptacek, C. J. and Cherry, J. A. 2000. Long-term performance of in situ reactive barriers for nitrate remediation. Ground water. 38(5): 689-695.
Safarbeiranvand, M., Amanipoor, H., Battaleb-Looie, S., Ghanemi, K. and Ebrahimi B. 2018. Quality evaluation of groundwater resources using geostatistical methods (Case study; Central Lorestan Plain, Iran). Water Resources Management. 32: 3611-3628.
Soleimani, M., Hajabbasi, M.A., Afyuni, M., Charkhabi, A.H. and Shariatmadari, H. 2009. Bioaccumulation of Nickel and Lead by Bermuda Grass (Cynodon dactylon) and Tall Fescue. (Festuca arundinacea) from Two Contaminated Soils.CJES. 59-70.
Soleimani Sardou, F. Boroumand, N. and Azareh, A. 2016. Investigation of Spatial and temporal changes in groundwater quality in Jiroft plain, Journal of Rangeland and Watershed Management. 69(4): 932-921.
Spijker, J., Mol, G. and Posthuma, L. 2011. Regional ecotoxicological hazards associated with anthropogenic enrichment of heavy metals. Environment Geochemistry Health: 1-18.
Tavares, M.T., Sousa, A.J. and Abreu, M.M. 2008. Ordinary kriging and indicator kriging in the cartography of trace elements contamination in Sao Domingos mining site (Alentejo, Portugal). Journal of Geochemistry Exploration;98:43- 56.
Uluturhan, E. and F. Kucuksezgin. 2007. Heavy metal contaminants in red Pandora (Pagellus erythrinus) tissues from the Eastern Aegean Sea, Turkey. Water Research. 41: 1185-1192.
Van Meirvenne, M. and Meklit, T. 2010. Geostatistical simulation for the assessment of regional soil pollution. Geographical Analysis. 42: 121-35.
Wang, Z., Chai, L., Yang, Z., Wang, Y. and Wang. H. 2010. Identifying sources and assessing potential risk of heavy metals in soils from direct exposure to children in a mine-impacted city, Changsha, China, Journal of Environment Quality. 39:1616-23.
WHO, G. 2011. Guidelines for drinking-water quality, World Health Organization, 216, 303-304.
Wu, C.F., Wu, J.P., Luo, Y.M., Zhang, H.B., Teng, Y. and DeGloria, D.S. 2011. Spatial interpolation of severely skewed data with several peak values by the approach integrating kriging and triangular irregular network interpolation. Environment and Earth Science. 63: 1093e1103.
Xu, Y.J., Liu, X.Z. and Ma, A.J. 2004. Current research on toxicity effect and molecular mechanismof heavy metals on fish. Marine Science. 28(10): 67-70.
Yang, C., Wu, Z., Zhang, H., Guo, R. and Wu, Y. 2009. Risk assessment and distribution of soil Pb in Guangdong, China. Environment Monitoring Assessment.159: 381-91.
Zhao, Y., Xu, X., Sun, W., Huang, B. Darilek, J. and Shi, X. 2008. Uncertainly assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential
Zhao C., Qiao X., Cao Y. and Shao Q. 2017. Application of hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment of energy crops. Fuel. 205: 184–191.