بهینه‌سازی الگوی کشت مبتنی بر مدیریت ریسک در شبکه آبیاری پایاب سد یامچی اردبیل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه آبیاری و زهکشی، دانشکده آب و محیط‌زیست دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه آبیاری و زهکشی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران

3 گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 دانشیار گروه مهندسی عمران، دانشگاه شهید چمران اهواز

چکیده

بهینه‌سازی الگوی کشت یک راهبرد مهم در مصرف بهینه آب در کشاورزی می‌باشد. تحقیق حاضر تلاشی برای توسعه و ارزیابی چهار مدل هیبریدی بر مبنای بیشینه‌سازی نرخ بازدهی اقتصادی و کمینه‌سازی ریسک انتخاب الگوی کشت بهینه است. مدل‌ها بر اساس شاخص‌های ریسک شامل واریانس (مدل MVar)، نیم واریانس (مدل MSVar)، قدر مطلق انحراف از میانگین (مدل MADev) و ارزش در معرض ریسک شرطی (مدل MCOVaR) و با رعایت قیود حاکم توسعه‌یافته‌اند و در یک سطح اطمینان انتخابی امکان تعیین بهترین سناریوی الگوی کشت با بالاترین نرخ بازدهی اقتصادی و کمترین ریسک که قابل‌اندازه‌گیری است، را در مرحله تصمیم‌گیری فراهم می‌آورند. داده‌های مورداستفاده مربوط به شبکه آبیاری پایاب سد یامچی اردبیل و برای سال زراعی 98-1397 می‌باشد. توسعه مدل‌ها در محیط MATLAB بر اساس برنامه‌ریزی غیرخطی و حل مسئله بهینه‌سازی با استفاده از الگوریتم ازدحام ذرات و به‌صورت چندهدفه انجام‌شده است. بالاترین مقدار ضریب همبستگی در رگرسیون نتایج مدل‌ها با معادله فوریه به میزان 9997/0R2= با دقت (0011/0RMSE=) برای مدل MADev به دست آمد. نتایج نشان داد بیشترین بازدهی به 0.31 متعلق به سیب‌زمینی با حداکثر ریسک 58% و کمترین مقدار بازدهی به مقدار 0.13 مربوط به گیاه ذرت با حداکثر ریسک 63% است. با محاسبه 50 سناریوی بهترین الگوهای کشت ممکن ازنظر ارضای توابع هدف و قیود حاکم، جبهه کارای تک‌تک مدل‌ها ترسیم و جدول مقادیر درآمد سیستم برای سطوح ریسک 20% و 30% استخراج و ارائه گردید. نتایج به‌دست‌آمده در تمام مدل‌ها بیانگر افزایش بازدهی اقتصادی با افزایش سطح ریسک‌پذیری سیستم در انتخاب الگوی کشت‌های بهینه بوده و این افزایش در مدل MADev نسبت به بقیه مدل‌ها از شیب بیشتری برخوردار است. همچنین نتایج نشان داد افزایش ریسک‌پذیری، افزایش سطح زیر کشت گیاهان با مصرف آب بیشتر و نهایتاً افزایش مقدار نیاز آبی کل را در پی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Cultivation Pattern Based on Risk Management in the Downstream Irrigation Network of Ardabil Yamchi Dam

نویسندگان [English]

  • Abdolrahim hooshmand 1
  • Hossein Mohammadzadeh 2
  • Amin Kanooni 3
  • Ali Haghighi 4
1 Associate Professor, Department of Irrigation and Drainage Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Irrigation and Drainage Engineering, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Water Engineering Department, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili
4 Civil Engineering Department, Faculty of Engineering, Shahid Chamran University, Ahwaz, Iran
چکیده [English]

Cropping pattern optimization is an important strategy in the optimal use of water in agriculture. The present study attempted to develop and evaluate four hybrid models based on maximizing economic return rate and minimizing risk based on risk indices including variance (MVar model), semi-variance (MSVar model), absolute value deviation from mean (MADev model) and conditional value at risk (MCOVaR model). The MCOVaR model is governed by observing the rules, which at a selective confidence level allows determining the best cropping pattern scenario with selective return rate and the lowest risk that can be measured in the decision-making stage. The data used are related to the downstream irrigation network of Ardabil Yamchi Dam and for the 1397-98 crop year. The development of the model in MATLAB is based on nonlinear programming and optimization problem solving using particle swarm algorithm in a multi-objective solution. The highest correlation coefficient in regression of the models with Fourier equation was R2=0.9997 with accuracy (RMSE=0.0011) for MADev model, The results showed that the highest yield of 0.31 belonged to potatoes with a maximum risk of 58% and the lowest yield of 0.13 belonged to the maize plant with a maximum risk of 63%. By calculating 50 scenarios of the best possible cropping patterns in terms of satisfying the target functions and governing conditions, the pareto front of each model was drawn and the table of system income values for risk levels of 20% and 30% was extracted and presented. The results obtained in all models indicate an increase in economic efficiency by increasing the risk level of the system in selecting the optimal cropping pattern and this increase in MADev model is more steep than other models and increasing risk-taking leads to increasing the area under cultivation of plants with more water consumption.

کلیدواژه‌ها [English]

  • Conditional value at risk
  • Optimal cropping pattern
  • Risk Management
  • Particle Swarm Algorithm
دلاور، م.، مرید، س. و مقدسی، م. 1393. توسعه مدل بهینه‌سازی-شبیه سازی مبتنی بر ریسک تخصیص منابع آب با استفاده از مفهوم ارزش در معرض خطر شرطی، مطالعه موردی: شبکه آبیاری زاینده‌رود. مجله تحقیقات منابع آب ایران. 1 (10): 14-1
مقدسی، م.،‌ مرید،، س. و عراقی نژاد، ش. 1387. بهینه‌سازی تخصیص آب در شرایط کم‌آبی با استفاده از روش‌های غیرخطی، هوش جمعی و الگوریتم ژنتیک. مجله تحقیقات آب ایران.3 (4): 13-1
منعم، م ج. و نوری، م ع. 1389. کاربرد الگوریتم بهینه‌سازی PSO در توزیع و تحویل بهینه آب در شبکه‌های آبیاری. مجله آبیاری و زهکشی ایران. 1 (4): 82- 73.
نیکو، م ر.، امیدوار، م.، هنر، ت. و سپاس خواه، ع ر. 1395. تدوین یک مدل فازی بهینه‌سازی الگوی کشت و تخصیص آب بر مبنای تئوری بازیهای همکارانه، مطالعه موردی: کانال اردبیهشت شبکه آبیاری درودزن فارس. مجله علوم آب‌وخاک -علوم و فنون کشاورزی و منابع طبیعی، 76 (20): 13-1.
Abrishambaf, O., Faria, P., Gomes, L. and Vale, Z. 2020. Agricultural irrigation scheduling for a crop management system considering water and energy use optimization. Energy Reports. 6 (2020): 133-139.
Ahmad, I. and Tang, D. 2016. Multi-objective linear programming for optimal water allocation based on satisfaction and economic criterion. Arabian Journal for Science and Engineering. 41(4): 1421-1433.
Andersson, F., Mausser, H., Rosen, D. and Uryasev, S. 2001. Credit risk optimization with conditional value-at-risk criterion. Mathematical Programming. 89(2): 273-291.
Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. 1999. Coherent measures of risk. Mathematical finance. 9(3): 203-228.
Delavar, M., Moghadasi, M., and Morid, S. 2012. Real-time model for optimal water allocation in irrigation systems during droughts. Journal of irrigation and drainage engineering. 138(6): 517-524.
Fletcher, D. M., Ruiz, S. A., Dias, T., Jones, D. L. and Roose, T. 2020. Precipitation-optimised targeting of nitrogen fertilizer In A Model Maize Cropping Sysetem. Science of The Total Environment. 756 (2021): 144051.
Haimes, Y. Y. and Hall, W. A. 1974. Multiobjectives in water resource systems analysis: The surrogate worth trade off method. Water Resources Research. 10(4): 615-624.
Honar, T., Ghazali, M. and Nikoo, M. R. 2020. Selecting the Right Crops for Cropping Pattern Optimization Based on Social Choice and Fallback Bargaining Methods Considering Stakeholders’ Views. Iranian Journal of Science and Technology, Transactions of Civil Engineering.  45(2): 1077-1088.
JAAMAN, S. H. H., Lam, W. H. and Isa, Z. 2011. Different downside risk approaches in portfolio optimisation. Journal of Quality Measurement and Analysis JQMA. 7(1): 77-84.
Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks. (4): 1942-1948. IEEE.
Jorion, P. 2000. Risk management lessons from long‐term capital management. European financial management. 6(3): 277-300.
Lalehzari, R., Boroomand Nasab, S., Moazed, H. and Haghighi, A. 2016. Multiobjective management of water allocation to sustainable irrigation planning and optimal cropping pattern. Journal of Irrigation and Drainage Engineering. 142(1): 05015008.
Li, M and Guo, P. 2014. A multi-objective optimal allocation model for irrigation water resources under multiple uncertainties. Applied Mathematical Modelling. 38(19-20): 4897-4911.
Li, M., Guo, P. and Singh, V.P., 2016. An efficient irrigation water allocation model under uncertainty. Agricultural Systems. 144(2016): 46-57.
Markowitz H. 1952. Portfolio selection. Journal of Finance. 7(1): 77-91.
Parvaz, G., Rostaminya, M. and Alizadeh, H. 2018. Optimization of the Cropping Pattern Using AquaCrop-GIS (Case Study: Dehloran Plain, Ilam Province). Iranian Journal of Soil and Water Research. 49(4): 865-877.  
Pishgar-Komleh, S. H., Akram, A., Keyhani, A., Sefeedpari, P., Shine, P. and Brandao, M. 2020. Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran. The International Journal of Life Cycle Assessment. 25(3): 620-632.
Sarykalin, S., Serraino, G. and Uryasev, S. 2008. Value-at-risk vs. conditional value-at-risk in risk management and optimization. In State-of-the-art decision-making tools in the information-intensive age. 270-294. Informs.
Shao, L. G., Qin, X. S. and Xu, Y. 2011. A conditional value-at-risk based inexact water allocation model. Water resources management. 25(9): 2125-2145.
Shreedhar, R. 2017. Multi Crop Optimization using Linear Programming model for maximum benefit. In Proceedings of International Conference on Hydraulics and Environmental systems (ICHES 2017), KLE Dr. MS Sheshgiri College of Engineering and Technology, Belagavi, India. 23rd 25th March. .
Soltani, M., Kerachian, R., Nikoo, M. R. and Noory, H. 2016. A conditional value at risk-based model for planning agricultural water and return flow allocation in river systems. Water resources management. 30(1): 427-443.
Xie, Y. L. and Huang, G. H. 2014. An optimization model for water resources allocation risk analysis under uncertainty. Journal of Hydroinformatics. 16(1): 144-164.
Yamout, G. M., Hatfield, K. and Romeijn, H. E. 2007. Comparison of new conditional value‐at‐risk‐based management models for optimal allocation of uncertain water supplies. Water Resources Research. 43(7).
Yamout, G.M., 2005. Application of single party and multiple party decision making under risk and uncertainty to water resources allocation problems. University of Florida.
Zhang, C. and Guo, P. 2018. An inexact CVaR two-stage mixed-integer linear programming approach for agricultural water management under uncertainty considering ecological water requirement. Ecological Indicators. 92(2018): 342-353.
Zhong, H., Sun, L., Fischer, G., Tian, Z. and Liang, Z. 2019. Optimizing regional cropping systems with a dynamic adaptation strategy for water sustainable agriculture in the Hebei Plain. Agricultural Systems. 173(2019): 94-106.
Zhang, Y., Qu, H., Yang, X., Wang, M., Qin, N. and Zou, Y. 2020. Cropping system optimization for drought prevention and disaster reduction with a risk assessment model in Sichuan Province. Global Ecology and Conservation. 23(2020): e01095.