ارزیابی محصول ماهواره‎ای CHIRPS در بررسی روند تغییر بارش‎های جنوب شرق ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه اکولوژی، پژوهشکده علوم محیطی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته،

2 دانش آموخته کارشناسی ارشد هواشناسی کشاورزی، دانشگاه فردوسی مشهد

3 دانشکده مهندسی عمران ومحیط‌زیست، دانشگاه بویزی آمریکا

چکیده

کاهش قابل ملاحظه حجم آب دو تالاب مهم هامون و جازموریان در منطقه خشک جنوب شرق کشور تبعات اقتصادی، اجتماعی و محیط‎زیستی متعددی را به دنبال داشته است. با اینکه کاهش آب این دو تالاب تحت تاثیر عوامل اقلیمی و انسانی است، اما اغلب تغییرات اقلیمی به ویژه کاهش بارش به عنوان عامل اصلی در نظر گرفته می‎شود. بنابراین در این مطالعه، روند تغییرات بارش در منطقه جنوب شرق کشور با استفاده از محصول ماهواره‎ای CHIRPS مورد بررسی قرار گرفت. برای ارزیابی دقت CHIRPS در مقایسه با داده‎های بارش ایستگاه‎ها ازشاخص‎های طبقه بندی آماری شامل احتمال آشکارسازی (POD)، نرخ هشدار اشتباه (FAR) و شاخص آستانه موفقیت (CSI) و معیارهای خطاسنجی شامل ضریب تبیین (R2)، ضریب همبستگی پیرسون (PCC)، جذر میانگین مربعات خطا (RMSE) و میانگین خطاها (ME) در سه مقیاس زمانی روزانه، ماهانه و سالانه استفاده شد. نتایج نشان داد که این محصول در ردیابی تعداد روزهای بارانی و غیربارانی از دقت مناسبی برخوردار نیست (POD و CSI کمتر از 2/0 و FAR بیشتر از 6/0). این محصول تخمین دقیقی از بارش روزانه ارائه نمی‎کند (R2 کمتر از 2/0 و PCC کمتر از 4/0)، اما در مقیاس ماهانه و سالانه از دقت نسبتا مناسبی برخوردار است (R2 بیشتر از 6/0 و PCC بیشتر از 8/0). بررسی روند بارش در منطقه جنوب شرق کشور نشان داد که به طور کلی مقدار بارش در مقیاس ماهانه، فصلی و سالانه در 40 سال گذشته افزایشی بوده است و یا در صورت کاهشی بودن، کاهش آن معنی دار نبوده است. بر این اساس کاهش سطح آب تالاب‎ها نمی‎تواند تنها ناشی از تغییرات بارش باشد و باید نقش سایر عوامل و به‎ویژه فعالیت‎های انسانی را نیز در نظر گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of CHIRPS Satellite Product for Trend Analysis of Precipitation in the Southeast of Iran

نویسندگان [English]

  • Ameneh Mianabadi 1
  • Khosro Salari 2
  • Yavar Pourmohamad 3
1 Department of Ecology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
2 MSc in Agrometeorology, Ferdowsi University of Mashhad
3 Faculty of Civil Engineering and Environment, Boise state university, USA
چکیده [English]

The significant reduction in water volume of the two important wetlands of Hamoun and Jazmourian in the arid region of the southeast of the country has had several economic, social, and environmental consequences. Although the reduction of water in these two wetlands is influenced by climatic and human factors, often climate change, especially the decrease in rainfall is considered as the main factor. Therefore, in this study, the trend of precipitation changes in the southeastern region of the country is investigated using the CHIRPS satellite product. To evaluate the accuracy of CHIRPS compared to station precipitation data, the Categorical Statistical Indices including Probability of Detection (POD), False Alarm ratio (FAR) and Critical Success Index (CSI) and statistical criteria including coefficient of determination (R2), Pearson correlation coefficient (PCC), root mean square error (RMSE) and mean error (ME) were used in three time scales: daily, monthly and annual. The results showed that this product does not have good accuracy in detecting the number of rainy and non-rainy days (POD<0.2, CSI<0.2, FAR>0.6). This product does not provide an accurate estimate of daily precipitation (R2<0.2 and PCC<0.4), but has relatively good accuracy on a monthly and annual scale (R2>0.6 and PCC>0.8). The trend analysis of precipitation in the southeastern region of the country showed that in general, the amount of precipitation on a monthly, seasonal and annual scale has been increasing, or in some cases insignificant decreasing, during the last 40 years. Accordingly, the decrease in the water level of wetlands cannot be due only to changes in rainfall, and the role of other factors, especially human activities should be considered.

کلیدواژه‌ها [English]

  • Climate Change
  • Drought
  • Precipitation
  • CHIRPS
میان‎آبادی، آ.، علیزاده، ا.، ثنایی نژاد، ح.، بنایان اول، م. و فریدحسینی، ع. 1392. ارزیابی آماری خروجی مدل CMORPH در برآورد بارش شمال شرق ایران (مطالعه موردی: خراسان شمالی). آب و خاک. 27 (5): 927-919.
گرجی زاده، ع.، آخوندعلی، ع. م.، شهبازی، ع. و مریدی، ع. 1398. مقایسه و ارزیابی بارش برآورد شده توسط مدل‎های ERA-Interim، PERSIANN-CDR و CHIRPS در بالادست سد مارون. تحقیقات منابع آب ایران. 15 (1): 279-267.
Aadhar, S., & Mishra, V. 2017. High-resolution near real-time drought monitoring in South Asia. Scientific Data 4(1): 170145.
Ashouri, H. et al. 2015. PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. American Meteorological Society 96: 69–84.
Ayehu, G.T., Tadesse, T., Gessesse, B., & Dinku, T. 2018. Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia. Atmospheric Measurement Techniques 11(4): 1921–1936.
Bai, L., Shi, C., Li, L., Yang, Y., & Wu, J. 2018. Accuracy of CHIRPS Satellite-Rainfall Products over Mainland China. Remote Sensing 10(3): 362.
Beck, H.E. et al. 2017. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrology and Earth System Sciences 21(12): 6201–6217.
Bichet, A., & Diedhiou, A. 2018. West African Sahel has become wetter during the last 30 years, but dry spells are shorter and more frequent. Climate Research 75(2): 155–162.
Burroughs, W. 2003. Climate: Into the 21st Century. Cambridge, UK,: Cambridge University Press.
Cavalcante, R.B.L. et al. 2020. Evaluation of extreme rainfall indices from CHIRPS precipitation estimates over the Brazilian Amazonia. Atmospheric Research 238: 104879.
Degefu, M.A., Alamirew, T., Zeleke, G., & Bewket, W. 2019. Detection of trends in hydrological extremes for Ethiopian watersheds, 1975–2010. Regional Environmental Change: Online Published.
Dembélé, M., & Zwart, S.J. 2016. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. International Journal of Remote Sensing 37(17): 3995–4014.
Dinku, T. et al. 2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society 144(June 2017): 292–312.
Duan, Z., Liu, J., Tuo, Y., Chiogna, G., & Disse, M. 2016. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of The Total Environment 573: 1536–1553.
Ebert, E.E., Janowiak, J.E., & Kidd, C. 2007. Numerical Models. Bulletin American Meteorological Society 88: 47–64.
Funk, C. et al. 2015. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data 2: 1–21.
Gao, F. et al. 2018. Evaluation of CHIRPS and its application for drought monitoring over the Haihe River Basin, China. Natural Hazards 92(1): 155–172.
Gebrechorkos, S.H., Hülsmann, S., & Bernhofer, C. 2019. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. International Journal of Climatology 39(1): 18–30.
Geleta, C.D., & Deressa, T.A. 2021. Evaluation of Climate Hazards Group InfraRed Precipitation Station (CHIRPS) <scp>satellite‐based</scp> rainfall estimates over Finchaa and Neshe Watersheds, Ethiopia. Engineering Reports 3(6): 1–16.
Ghozat, A., Sharafati, A., & Hosseini, S.A. 2021. Long-term spatiotemporal evaluation of CHIRPS satellite precipitation product over different climatic regions of Iran. Theoretical and Applied Climatology 143(1–2): 211–225.
Greve, P. et al. 2014. Global assessment of trends in wetting and drying over land. Nature Geoscience 7(10): 716–721.
Guo, H. et al. 2017. Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product. Sustainability 9(6): 901.
Heathcote, R. 1983. The arid lands: their use and abuse. Longman, New York.
Hong, Y., Hsu, K.-L., Sorooshian, S., & Gao, X. 2004. Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System. Journal of Applied Meteorology 43(12): 1834–1853.
Hsu, K.-L., Gao, X., Sorooshian, S., & Gupta, H. V. 1997. Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks. Journal of Applied Meteorology 36: 1176–1190.
Huffman, G.J. et al. 2006. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. Journal of Hydrometeorology 8: 38–55.
Joyce, R.J., Janowiak, J.E., Arkin, P.A., & Xie, P. 2004. CMORPH : A Method that Produces Global Precipitation Estimates from Passive Microwave and Infrared Data at High Spatial and Temporal Resolution. Journal of Hydrometeorology 5: 487–503.
Katsanos, D., Retalis, A., & Michaelides, S. 2016. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmospheric Research 169: 459–464.
Katsanos, D., Retalis, A., Tymvios, F., & Michaelides, S. 2016. Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus. Natural Hazards 83(April): 53–63.
Kendall, M.G. 1975. Rank Correlation Methods. London, UK: Charles Griffin.
Mann, H.B. 1945. Nonparametric Tests Against Trend. Econometrica 13(3): 245–259.
Messmer, M., González-Rojí, S.J., Raible, C.C., & Stocker, T.F. 2021. Sensitivity of precipitation and temperature over the Mount Kenya area to physics parameterization options in a high-resolution model simulation performed with WRFV3.8.1. Geoscientific Model Development 14(5): 2691–2711.
Mianabadi, A. et al. 2019. Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966–2015. Theoretical and Applied Climatology 135(1–2): 677–691.
Mianabadi, A., Davary, K., Kolahi, M., & Fisher, J. 2021. Water/climate nexus environmental rural-urban migration and coping strategies. Journal of Environmental Planning and Management: 1–25.
Mianabadi, A., Davary, K., Mianabadi, H., & Karimi, P. 2020. International Environmental Conflict Management in Transboundary River Basins. Water Resources Management 34(11): 3445–3464.
Mianabadi, H., Mostert, E., & Van De Giesen, N. 2015. Trans-boundary River Basin Management : Factors Influencing the Success or Failure of International Agreements. In W. K. Hipel, L. Fang, J. Cullmann, & M. Bristow (eds) Conflict Resolution in Water Resources and Environmental Management, 133–143. Heidelberg: Springer
Montes, C., Acharya, N., Hassan, S.M.Q., & Krupnik, T.J. 2021. Intense precipitation events during the monsoon season in Bangladesh as captured by satellite-based products. Journal of Hydrometeorology 22: 1405–1419.
Nalley, D., Adamowski, J., Khalil, B., & Ozga-Zielinski, B. 2013. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmospheric Research 132–133: 375–398.
Nawaz, M., Iqbal, M.F., & Mahmood, I. 2021. Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmospheric Research 248: 105289.
Nguyen, P. et al. 2020. PERSIANN Dynamic Infrared–Rain Rate (PDIR-Now): A Near-Real-Time, Quasi-Global Satellite Precipitation Dataset. Journal of Hydrometeorology 21(12): 2893–2906.
Oliveira‐Júnior, J.F. et al. 2021. Confronting CHIRPS dataset and in situ stations in the detection of wet and drought conditions in the Brazilian Midwest. International Journal of Climatology: 1–16.
Oliver-Smith, A. 2012. Debating environmental migration: society, nature and population displacement in climate change. Journal of International Development 24(8): 1058–1070.
Paredes Trejo, F.J., Barbosa, H.A., Peñaloza-Murillo, M.A., Alejandra Moreno, M., & Farías, A. 2016. Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela. Atmosfera 29(4): 323–342.
Perdigón-Morales, J., Romero-Centeno, R., Pérez, P.O., & Barrett, B.S. 2018. The midsummer drought in Mexico: perspectives on duration and intensity from the CHIRPS precipitation database. International Journal of Climatology 38(5): 2174–2186.
Pingale, S.M., Khare, D., Jat, M.K., & Adamowski, J. 2014. Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmospheric Research 138: 73–90.
Prakash, S. 2019. Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India. Journal of Hydrology 571: 50–59.
Rivera, J.A., Hinrichs, S., & Marianetti, G. 2019. Using CHIRPS Dataset to Assess Wet and Dry Conditions along the Semiarid Central-Western Argentina. Advances in Meteorology 2019: 1–18.
Rivera, J.A., Marianetti, G., & Hinrichs, S. 2018. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmospheric Research 213: 437–449.
Romilly, T.G., & Gebremichael, M. 2011. Evaluation of satellite rainfall estimates over Ethiopian river basins. Hydrology and Earth System Sciences 15(5): 1505–1514.
Saeidizand, R., Sabetghadam, S., Tarnavsky, E., & Pierleoni, A. 2018. Evaluation of CHIRPS rainfall estimates over Iran. Quarterly Journal of the Royal Meteorological Society 144(S1): 282–291.
UNFCCC. 2007. Climate Change: Impacts, Vulnerabilities and Adaptation in Developing Countries. United Nations Framework Convention on Climate Change: 68.
Zambrano, F., Wardlow, B., & Tadesse, T. 2016. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. In C. M. U. Neale & A. Maltese (eds) Remote Sensing for Agriculture, Ecosystems, and Hydrology XVIII , 9998, 999823.