تحلیل حساسیت مدل AquaCrop نسبت به تغییرات پارامترهای رشد گیاه ذرت تحت تنش شوری در روش های مختلف آبیاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد آبیاری و زهکشی، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران.

2 استادیار، گروه علوم و مهندسی آب، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران

3 دکتری آبیاری و زهکشی، سازمان آب و برق استان خوزستان، اهواز، ایران.

چکیده

تحلیل حساسیت مهم‌ترین مرحله قبل از واسنجی هر مدل گیاهی است.این عمل به محققان کمک می‌کند تا اطلاعات کافی در خصوص اثرگذاری هر پارامتر و میزان تغییرات آن در مرحله واسنجی داشته باشند.این موضوع با توجه به روند رو به افزایش کاربرد مدل AquaCrop برای شبیه‌سازی گیاهان زراعی از اهمیت بیشتری برخوردار است.به همین دلیل در تحقیق حاضر میزان حساسیت این مدل گیاهی نسبت به تغییرات پارامترهای رشد گیاهی بهره‌وری آب نرمال شده (WP*)، حداکثر ضریب تعرق گیاهی (KCTrx)، ضریب پوشش گیاهی اولیه (CC0)، ضریب رشد پوشش (CGC)، ضریب کاهش پوشش (CDC) و شاخص برداشت (HI) با استفاده از روش Beven (1979) ارزیابی شد.بدین منظور از داده‌های برداشت شده در یک مزرعه تحقیقاتی در شهرستان اهواز در سال 1393 استفاده شد. تیمارهای مورد مطالعه شامل روش آبیاری (D: آبیاری بارانی با آب شور و F: آبیاری بارانی با کاربرد آب شور و شیرین و S: آبیاری جویچه‌ای) با پنج کیفیت آب آبیاری (S1: 5/2، S2: 2/3، S3: 9/3، S4: 6/4 و S5: 1/5 دسی‌زیمنس بر متر) بود.نتایج نشان داد که بیشترین حساسیت نسبت به تغییرات بهره‌وری آب نرمال شده (0.95≤Spi≤1.04) و ضریب گیاهی برای تعرق (0.95≤Spi≤0.67) بود.پس از آن، حساسیت شاخص برداشت (0.51≤Spi≤0.56) در دسته متوسط قرار داشت. میزان تغییرات عملکرد در مقادیر مختلف بهره‌وری آب نرمال شده، ضریب گیاهی برای تعرق، شاخص برداشت و ضریب کاهش پوشش به ترتیب 3/3-7/1، 6/1-8/0، 16/1-6/0 و 64/0-32/0 تن در هکتار بود. ضرایب حساسیت برای همه پارامترها به جز CDC مثبت بود.بنابراین با افزایش مقدار CDC مدل AquaCrop دچار خطای کم‌برآوردی و با افزایش مقدار سایر پارامترها این مدل دچار خطای بیش‌برآوردی می‌شود.بنابراین، در شرایطی که اختلاف عملکرد واقعی و شبیه‌سازی شده زیاد است،بهتر است پارامترهای بهره‌وری آب نرمال شده و ضریب گیاهی برای تعرق مورد توجه قرار گیرند.در غیر این صورت، پارمترهای شاخص برداشت و ضریب کاهش پوشش مد نظر قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Sensitivity Analysis of AquaCrop Model to Changes in Growth Parameters of Corn under Salinity Stress in Different Irrigation Method

نویسندگان [English]

  • Afshin Sarkohaki 1
  • Aslan Egdernezhad 2
  • Sohrab Minaei 3
1 M.Sc. Student of Irrigation and drainage, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
2 Assistant professor, Department of Water Sciences and Engineering, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
3 PhD of Irrigation and Drainage, Khuzestan Water and Power Organization, Ahvaz, Iran.
چکیده [English]

Sensitivity analysis is the most important step before calibrating crop models. It helps researchers to have enough information about the effectiveness of each parameter, and changes them during calibration stage. This issue is more important due to the increasing use of AquaCrop model for crop simulation. Therefore, in the study, the sensitivity of AquaCrop to change some crop growth parameters; normalized water productivity (WP *), maximum transpiration coefficient (KCTrx), initial canopy cover (CC0), canopy growth coefficient (CGC), canopy decline coefficient (CDC) and harvest index (HI) were assessed using Beven (1979) method. For this purpose, the data collected in a research farm in Ahvaz during 2014 were used. The studied treatments include irrigation method (D: sprinkler irrigation using saline water, F: sprinkler irrigation using both saline and fresh water and S: furrow irrigation using saline water) with five irrigation water qualities (S1: 2.5, S2: 2.3, S3 : 3.9, S4: 4.6 and S5: 1.5 dS m-1). The results showed that the highest sensitivity was to changes in normalized water productivity (0.95≤Spi≤1.04) and maximum transpiration coefficient (0.95≤Spi≤0.67). After that, the sensitivity of harvest index (0.51≤Spi≤0.56) was in the middle category. The range of yield changes in different values of normalized water productivity, maximum transpiration coefficient, harvest index and canopy decline coefficient were 1.3-3.3, 0.8-1.6, 0.6-1.16 and 0.32-0.64 ton ha-1, respectively. Sensitivity coefficients were positive for all parameters except CDC. Therefore, by increasing the CDC, AquaCrop suffers from underestimation error and by increasing the value of other parameters; the model suffers from overestimation error. Therefore, in situations where the difference between observed and simulated yield is large, it is better to consider the parameters of normalized water productivity and maximum transpiration coefficient. Otherwise, the parameters of harvest index and canopy decline coefficient should be considered.

کلیدواژه‌ها [English]

  • Normalized Water Productivity
  • Beven Method
  • Simulation
  • Crop Model
ابراهیمی‌پاک، ن، ع.، احمدی، م.، اگدرنژاد، ا. و خاشعی سیوکی، ع. 1397. ارزیابی مدل AquaCrop در شبیه‌سازی عملکرد زعفران تحت سناریوهای مختلف کم‌آبیاری و مصرف زئولیت. نشریه حفاظت منابع آب و خاک. 8(1): 117-132.
ابراهیمی‌پاک، ن، ع.، اگدرنژاد، ا.، تافته، آ. و احمدی، م. 1398. ارزیابی مدل‌های AquaCrop، WOFOST و CropSyst در شبیه‌سازی عملکرد کلزا در منطقه قزوین. نشریه آبیاری و زهکشی ایران. 13(3): 715-726.
احمدی، م.، قنبرپوری، م. و اگدرنژاد، ا. 1400. مقدار آب کاربردی گندم با استفاده از تحلیل حساسیت و ارزیابی مدلAquaCrop. نشریه مدیریت آب در کشاورزی. 8(1): 30-15.
ادبی، و.، عزیزیان، ا.، رمضانی اعتدالی، ه.، کاویانی، ع. و آبابایی، ب. 1398. آنالیز حساسیت موضعی مدل AquaCrop برای دو محصول گندم و ذرت در دو منطقه دشت قزوین و پارس‌آباد مغان. نشریه آبیاری و زهکشی ایران. 13(6): 1565-1579.
اگدرنژاد، ا.، ابراهیمی‌پاک، ن. ع.، تافته، آ. و احمدی، م. 1397. برنامه‌ریزی آبیاری کلزا با استفاده از مدل AquaCrop در دشت قزوین. نشریه مدیریت آب در کشاورزی. 5(2-10): 64-53.
رحیمی خوب، ح.، سهرابی، ت. و دلشاد، م. 1399. تحلیل حساسیت پارامترهای رشد گیاه ریحان در مدل AquaCrop تحت تنش‌های مختلف کود نیتروژن. مجله تحقیقات آب و خاک ایران. 51(6): 1341-1351.
مینایی س (1393) بررسی تأثیر مدیریت آبیاری بارانی با آب شور بر عملکرد و جذب یون‌ها برای ذرت در اقلیم اهواز. پایان نامه دکتری رشته آبیاری و زهکشی. دانشگاه شهید چمران اهواز. 215 صفحه.
یعقوب زاده، م.، احمدی، م.، سیدکابلی، ح.، زمانی، غ، ر. و امیرآبادی زاده، م. 1396. ارزیابی اثر تغییر اقلیم بر خشکسالی کشاورزی به کمک شاخص‌های ETDI و SPI. مجله پژوهش‌های حفاظت آب و خاک. 24(4): 43-61.
Araya, A., Habtu, S., Hadgu, K. M., Kebede, A. and Dejene, T. 2010. Test of AquaCrop model in simulating biomass and yield of water deficit and irrigated barely. Agricultural Water Management. 97:1838–1846.
Beven, K. 1979. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 44(3-4), 169-190.
Cheong, Y. H., Kim, K. N., Pandey, G. K., Gupta, R., Grant, J. J. and Luan, S. 2003. A calcium sensor that differentially regulates salt, drought and cold responses in Arabidopsis. The Plant Cell. 15:1833-1845.
De Juan Valero, J. A. M., Maturano, A., Artigao, J. M., Ramirez, T. M. B. and Ortega, A. J. F. 2005. Growth and nitrogen use efficiency of irrigated maize in a semiarid region as affected by nitrogen fertilization. Spanish Journal of Agricultural Research. 3(1): 134-144.
FAO. 2014. Statistical Database of the Food and Agriculture Organization of the United Nations. FAO, Rome.
Guo, D., Zhao, R., Xing, X. and Ma, X. 2019. Global sensitivity and uncertainty analysis of the AquaCrop model for maize under different irrigation and fertilizer management conditions. Archives of Agronomy and Soil Science. 1-19.
Heng, L. k., Hsiao, T. C., Evett, S., Howell, T. and Steduto, p. 2009. Validating the FAO AquaCrop model for Irrigated and Water Deficient field maize. Agronomy Journal. 101(3): 488-498.
Hsiao, T. C., Heng, L K., Steduto, P., Raes, D. and Fereres, E. 2009. AquaCrop Model parameterization and testing for maize. Agronomy Journal. 101: 448-459.
Jin, X., Li, Z., Nie, C., Xu, X., Feng, H., Guo, W. and Wang, J. 2018. Parameter sensitivity analysis of the AquaCrop model based on extended Fourier amplitude sensitivity under different agro-meteorological conditions and application. Field Crops Research. 226: 1-15.
Katerji, N., Campi, P. and Mastrorilli, M. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management. 130: 14-26.
Lenhart, T., Eckhardt, K., Fohrer, N. and Frede, H. 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 645-654.
Masanganise, J., Basira, K., Chipindu, B., Mashonjowa, E. and Mhizha, T. 2013. Testing the utility of a crop growth simulation model in predicting maize yield in a changing climate in Zimbabwe. International Journal of Agricultural and Food Science. 3(4): 157-163.
Raes, D., Steduto P., Hsiao, T. C. and Freres, E. 2012. Reference manual AquaCrop, FAO, land and water division, Rome Italy.
Salemi, H. R., Mohd Soom, M. A., Lee, T. S., Mousavi, S. F., Ganji, A. and Yusoff, M. K. 2011. Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. African Journal of Agricultural Research. 610(10): 2204-2215.
Steduto, P., Hsiao, T. C., Raes, D. and Fereres, E. 2009. AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal. 101(3): 426-437.
Todorovic, M., Albrizio, R., Zivotic, L., Abisaab, M. and Stwckle, C. 2009. Assessment of AquaCrop, CropSyst and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal. 101(3): 509-521.