شناسایی شبکه بهینه پایش کیفی آب زیرزمینی با استفاده از الگوریتم‌ جستجوی ممنوع (مطالعه موردی حوضه آبریز نیشابور)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی آب، دانشکده کشاورزی، مشهد، دانشگاه فردوسی مشهد، ایران

2 علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار گروه مهندسی آب، دانشکده مهندسی کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

4 گروه ریاضیات کاربردی، دانشکده ریاضی، مشهد، دانشگاه فردوسی مشهد، ایران

چکیده

مدیریت آب‌زیرزمینی نیازمند پایش دقیق کمی و کیفی آب‌زیرزمینی با توزیع مناسب مکانی و زمانی است. حداقل نمودن تعداد چاه‌های پایش با حداکثر توزیع مکانی برای اقتصادی کردن پایش سامانه‌های آب‌زیرزمینی، مورد نیازمدیران می‌باشد. بنابراین ساختار شبکه‌های پایش آب‌زیرزمینی و تعداد چاه‌های مورد نیاز به یک مسئله بهینه‌سازی مهندسی تبدیل می‌شود. هدف از این پژوهش یافتن شبکه‌های نماینده پایش بهینه با کمترین تعداد چاه که پوشش کافی برای شناخت کیفیت آب‌زیرزمینی در یک منطقه ایجاد کند، می‌باشد. با استفاده از این روش چاه‌های مازاد در شبکه شناسایی می‌شود. برای انجام این پژوهش از الگوریتم فرا ابتکاری جستجوی ممنوع استفاده شده است. تابع هدف در این پژوهش از دو هدف متقابل به هم تشکیل شده است. هدف اول حداکثرسازی تطابق بین توزیع شاخص کیفیت آب درونیابی شده در دو حالت با در نظر گرفتن تمام چاه‌های موجود و چاه‌های انتخاب شده از شبکه موجود می‌باشد. معیار ارزیابی این تطابق شاخص اماری نش-ساتکلیف می‌باشد. در این پژوهش کیفیت آب‌زیرزمینی با استفاده از یک شاخص کیفی آب که شامل 9 پارامتر کیفی است بیان شده است. هدف دوم حداقل کردن تعداد چاه‌های پایش انتخاب شده برای اقتصادی کردن هزینه پایش در نظر گرفته شده است. دو هدف با استفاده از ضریب وزنی که اهمیت اهداف نسبت به هم را مشخص می‌کند در یک تابع جمع‌آوری شده است. مدل ذکر شده برای تعداد چاه‌های فعال مختلف به کار گرفته شد. همچنین با استفاده از الگوریتم جستجوی ممنوع بهترین ترکیب چاه‌های فعال مختلف که حداکثر تابع هدف را محقق می‌کند شناسایی شد. شبکه‌های بهینه پیشنهادی به مدیران و تصمیم‌گیران این پیشنهاد را می‌دهد که با توجه به اهداف مورد نظر، شبکه بهینه برای پایش کیفیت آب‌زیرزمینی را انتخاب نمایند. در نهایت مدل بهینه‌سازی توانست شبکه‌های نماینده پایش را بین 34 تا 75 درصد بهینه کند.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of the optimum groundwater quality monitoring network usingTabu search algorithm (Case study of Neyshabur watershed)

نویسندگان [English]

  • Mohammad hasan Moayyedian 1
  • aliasghar beheshti 2
  • Ali Naghi Ziaei 3
  • Reza Ghanbari 4
1 Agriculture faculty, Ferdowsi university of Mashhad, Iran
2 Agriculture, Ferdowsi university of Mashhad, Mashhad, iran
3 Associate Professor of Water Engineering Department, Faculty of Agriculture, Ferdowsi University of Mashhad., Mashhad., Iran
4 department of applied mathematics, Ferdowsi university of Mashhad, Iran
چکیده [English]

Groundwater management requires accurate quantitative and qualitative monitoring of groundwater with proper spatial and temporal distribution. Minimizing the number of monitoring wells with maximum spatial distribution for making it economical to monitor groundwater systems is required by managers. Therefore, the structure of groundwater monitoring networks and the number of required wells becomes an engineering optimization problem. The purpose of this study is to find candidates for optimal monitoring network with the least number of wells that provide sufficient coverage to identify groundwater quality in an area. Hence, the excess wells in the network are identified. The meta-heuristic Tabu search algorithm has been used in this research. The objective function in this study consists of two conflicting goals. The first goal is the maximization of the match between the interpolated groundwater quality index distributions obtained using data from all wells and the wells from newly-generated network. The Nash-Sutcliffe model was utilized as a criterion to evaluate this compliance. In this study, groundwater quality is expressed using a water quality index, including nine quality parameters. The second goal is to minimize the number of monitoring wells selected to save on monitoring costs. The two mentioned goals are summed up in a function using a weight coefficient that determines the importance of the goals compared to each other. The mentioned model was used for a number of different active wells. Also, using the Tabu search algorithm, the best combination of different active wells that achieves the maximum objective function was identified. Optimal networks suggest managers and decision makers to choose the optimal network to monitor water quality according to the accepted budget and error. Consequently, this optimizing model could reduce the number of monitoring wells by 34 - 75%.

کلیدواژه‌ها [English]

  • Groundwater quality
  • monitoring network
  • optimization
ولایتی، س. 1378. بررسی عوامل مؤثّر بر تغییرات کیفی آبخوان نیشابور، فصلنامه‌ی تحقیقات جغرافیایی. 149: 134-119.
مؤسسه استاندارد وتحقیقات صنعتی ایران. 1387. آب آشامیدنی – ویژگی‌های فیزیکی و شیمیایی. تجدید نظر پنجم.
Loaiciga, H.A. and et al. 1992. Review of Ground-Water Quality Monitoring Network Design. Journal of Hydraulic Engineering. 118(1): 11-37.
Chadalavada, S. and Datta, B. 2008. Dynamic Optimal Monitoring Network Design for Transient Transport of Pollutants in Groundwater Aquifers. Water Resources Management. 22: 651–670.
Bashi-Azghadi, N. and Kerachian, R. 2010. Locating monitoring wells in groundwater systems using embedded optimization and simulation models. Science of the Total Environment. 408 (10): 2189-2198.
Guo, Y., Wang, J.F. and Yin, X.L. 2011. Optimizing the groundwater monitoring network using MSN theory, Social and Behavioral Sciences. 21: 240-242.
McKinney, D.C. and Lin, M.D. 1994. Genetic algorithm solution of groundwater management models. Water Resource Research. 30(6): 1897–906.
Arora, J.S., 2004. Introduction to Optimum Design. Elsevier Academic Press, San Diego, CA.
Fisher, J.C. 2013. Optimization of water-level monitoring networks in the eastern Snake
River Plain aquifer using a kriging-based genetic algorithm method, scientific investigations report. 2013-5120 U.S
Al-Mashagbah, A. 2015. Assessment of Surface Water Quality of King Abdullah Canal, Using Physico-Chemical Characteristics and Water Quality Index, Jordan. Journal of Water Resource and Protection. 7: 339-352.
Tiwari, T.N. and Mishra, M.A.1985. A preliminary assignment of water quality index of major Indian rivers. Indian journal of Environmental Protection 5(4), 276-279.
Şener, Ş., Şener, E. and Davraz, A. 2017. Evaluation of water quality using water quality
index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment.
 
Glover, F. and Laguna, M. 1998. Tabu search in Handbook of combinatorial Optimization. Springer. Tamer Ayvaz, M and Elçi, A. 2017. Seeking the optimum groundwater monitoring network using a genetic algorithm approach. 563:1078-1091
دوره 16، شماره 4 - شماره پیاپی 94
مهر و آبان 1401
صفحه 777-788
  • تاریخ دریافت: 01 اردیبهشت 1401
  • تاریخ بازنگری: 11 خرداد 1401
  • تاریخ پذیرش: 05 شهریور 1401
  • تاریخ اولین انتشار: 05 شهریور 1401