ارزیابی سطح تنش خشکی مؤ ثر برای میزان تحمل به کم آبی ژنوتیپ های چغندرقند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیات علمی موسسه تحقیقات اصلاح و تهیه بذر چغندرقند

2 دانشیار پژوهش بخش تحقیقات فنی و مهندسی کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان همدان، سازمان تحقیقات، آموزش و ترویج کشاورزی

چکیده

بحران آب یک عامل محدود کننده عمده برای کشاورزی در تمام مناطق خشک و نیمه خشک جهان است. شناسایی ژنوتیپ‌ها برای تولید ارقام متحمل به خشکی مستلزم ارزیابی عملکرد شکر آنها در شرایط کم آبیاری است. بنابراین اعمال سطح تنش خشکی مؤثر، در ارزیابی ژنوتیپ ها برای تحمل به خشکی کاملاً ضروری است. بدین منظور چهار ژنوتیپ تحت هشت تیمار آبیاری با استفاده از طرح کرت های یک بار خرد شده در قالب طرح پایه بلوک های کامل تصادفی در چهار تکرار طی سال‌های1387و 1388 در مرکز تحقیقات کشاورزی همدان مورد ارزیابی قرار گرفت. هشت تیمار آبیاری شامل سه تیمار آبیاری نشتی بعد از 80، 130 و 180 میلی متر، دو تیمار آبیاری قطره‌ای شامل آبیاری بعد از 30 میلی متر با تامین 100 درصد و آبیاری بعد از 30 میلی متر با تامین 50 درصد آب مورد نیاز چغندرقند و سه تیمار آبیاری قطره‌ای بعد از 80، 130 و 180 میلی‌متر بر اساس تبخیر تجمعی از تشتک، اعمال شد. تیمارهای آبیاری در کرت‌های اصلی و چهار ژنوتیپ در کرت‌های فرعی قرار گرفتند. نتایج نشان داد که اثر برهمکنش بین ژنوتیپ ها و آبیاری برای شاخص حساسیت به خشکی، در سطح احتمال پنج درصد معنی دار بود. کاهش عملکرد شکر ژنوتیپ‌های چغندرقند در اثر کاهش مقدار آب (آبیاری قطره ای بعد از 30 میلی‌متر تبخیر از تشتک تبخیر با تامین 50 درصد آب مورد نیاز) شدیدتر از دور‌های مختلف در هر دو روش آبیاری بود. نتایج نشان داد که آبیاری نشتی، روش کارآمد و مؤثری برای ارزیابی تحمل به خشکی ژنوتیپ های چغندرقند نیست. بنابراین، به منظور ارزیابی تحمل به خشکی ژنوتیپ ها در برنامه های اصلاحی و تولید ارقام متحمل به خشکی، روش آبیاری قطره‌ای پس از تبخیر تجمعی 30 میلی متری با تامین 50 درصد نیاز آبی چغندرقند، به عنوان روش و سطح تنش خشکی مؤثر معرفی می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the Effective Drought Stress Level for Drought Tolerance of Sugar Beet Genotypes

نویسندگان [English]

  • Mohammad Reza Mirzaei 1
  • Ali Ghadami Firouzabadi 2
1 Member of the Scientific Research Institute of sugar beet
2 Associate Prof, Department of Agricultural Engineering Research, Hamedan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Hamedan, Iran.
چکیده [English]

Water scarcity is a major limiting factor for agriculture in all arid and semi-arid regions of the world. Identification of various genotypes to produce drought-tolerant cultivars requires an assessment of their sugar yield under deficit irrigation conditions. Implementation of irrigation system and an appropriate level of water stress are therefore absolutely necessary in assessing genotypes for drought tolerance. For this purpose, four genotypes under eight irrigation treatments in a split plot design based on a Randomized Complete Block with four replications during the years 1387 and 1388 the Research and Education Center for Agriculture and Natural Resources Hamadan were evaluated. Eight irrigation treatments consisted of three treatments of furrow irrigation after 80, 130 and 180 mm, two treatments of tape irrigation, including irrigation after 30 mm with 100% and irrigation after 30 mm with 50% supply of water requirement of sugar beet and three tape irrigation treatments including 80, 130 and 180 mm cumulative evaporation from the evaporation pan in main plots and four genotypes in sub plots. The results showed that the interaction between genotypes and irrigation for the drought susceptibility index (DSI) was significant at 5% probability level. Reduced sugar yield of sugar beet genotypes caused by reduction of the amount of water (30mm tape irrigation with 50% of supply of water requirement) was more severe than the different irrigation intervals. Furrow irrigation is not an efficient and effective method of evaluating drought tolerance of sugar beet genotypes. Therefore, in order to evaluate drought tolerance of genotypes in breeding programs and produce drought-tolerant genotypes, tape irrigation method after 30 mm cumulative evaporation with supplying 50% of the plant water requirement, is introduced and recommended as an appropriate method and drought stress level.

کلیدواژه‌ها [English]

  • Sugar yield
  • Drought susceptibility index
  • Tape irrigation
  • Different irrigation intervals
عبدالهیان نوقابی م.، شیخ الاسلامی. و بابایی ب. 1384. اصطلاحات و تعاریف کمیت و کیفیت تکنولوژیکی چغندرقند، اختصارات فنی. مجله چغندرقند . 21(1):  104-101.
Abbasi, Z., Golabadi, M., Khayamim, S. and Pessarakli, M. 2018.The response of drought-tolerant sugar beet to salinity stress under field and controlled environmental conditions.Journal of plant nutrition. 41(20): 2660-2672. Doi: 10.1080/01904167.2018.1497174
Araus, J.L., Villegas, D., Aparicio, N., Garci`adel Moral, L.F., El Hani Rharrabti, Y., FerrioP, J.P. and Royo, C. 2003. Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions. Crop Science. 43: 170–180.
Ashraf, A. 2010.Inducing drought tolerance in plants: Recent advances. Biotechnology Advances. 28: 169–183.
Blum, A. 1988.Plant Breeding for Stress Environments, CRC Press, London.
Bloch, D. and Hoffmann, C.M. 2005. Seasonal development of genotypic differences in sugar beet (Beta vulgaris L.) and their interaction with water supply. Journal of Agronomy and Crop Science. 191: 263-272.
Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucotelli, E., Mastrangelo, A.M., Francia, E., Mare, C., Tondelli, A. and Stanca, A.M. 2008. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research. 105: 1-14.
Costa, J.M., Ortuño, M.F. and Chaves, M.M. 2007. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. Journal of Integrative Plant Biology. 49: 1421–1434.
Dobermann, A., Wortmann, C.S., Ferguson, R.B., Hergert, G.W., Shapiro, C.A., Tarkalson, D.D. and Walters, D. 2001. Nitrogen response and economics for irrigated corn in Nebraska. Agronomy Journal. 103:67-75.
Dunham R.J. Water Use and Irrigation.In Cook, D.A. and Scott, R.K. (Eds.). 1993. The Sugar Beet Crop, Principle and Practice. Chapman and Hall, London, pp. 279
Hills, F.J., Winter, S.R. and Henderson, D.W. 1990. Sugar beet.In B.A. Stewart, and D.R. Nielsen (Eds.), Irrigation of Agricultural Crops.Madison, Wisconsin, USA. 795-810.
Hoffmann, C.M. 2010. Sucrose accumulation in sugar beet under drought stress. Journal of Agronomy and Crop Science. 196: 243–252.
Hosseini, S.A., Elise, R., Sylvain, P., Nusrat, A., Bastien, B. and Jean-Claude, Y. 2019. Calcium application enhances drought stress tolerance in sugar beet and promotes plant biomass and beet root sucrose concentration. International Journal of Molecular Science. 20: 37-77. Doi: 10.3390/ijms20153777
Jaleel, C.A. and A Llorente, B.E. 2009. Drought stress in plants: A review on water relations. Bioscience Research. 6: 20-27.
Karagöz, H., Çakmakci, R., Hosseinpour, A. and Kodaz, S. 2018. Alleviation of water stress and promotion of the growth of sugar beet (Beta vulgaris L.) plants by multi-traits. Applied Ecology and Environmental Research. 16(5): 6801-6813. doi.org/10.15666/aeer/1605_68016813
Kirda, C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerence. In Deficit irrigation practices.FAO.
Mahmoud, E.S.A., Hassanin, M.A., Borham, T.I. and Emara, E.I.R. 2018. Tolerance of some sugar beet varieties to water stress. Agricultural Water Management. 201: 144–151
Marchin, R.M., Ossola, A., Leisshman, R.L. and Ellsworth, D.S. 2020.A simple method for simulating drought effects on plant. Forntiers in plant science.doi: 10.3389/fPls.2019.01715
Mohawesh, O. 2018.Utilizing deficit irrigation to enhance growth performance and water-use efficiency of eggplant in arid environments. J. Agric. Science and Technology. 18: 265–276.
Motzo, R., Giunta, F. and Deidda, M. 2001.Factors affecting the genotype × environment interaction in spring triticale grown in a Mediterranean environment.Euphyitica. 121: 317–324.
Moutonnet, P. 2002. Yield response factors of field crops to deficit irrigation. In Deficit Irrigation practices.FAO. Rome, Italy. 11-15.
Neupane, J. and Guo, W. 2019. Agronomic Basis and Strategies for Precision Water Management: A Review. Agronomy. 9 (2), 87.Doi: 10.3390/agronomy9020087
Ober, E.S. and Rajabi, A. 2010.Abiotic stress in sugar beet. Sugar Tech. 12: 294-298. Doi 10.1007/s12355-010-0035-3.
Ober, E.S., Clark, C.J.A., Le Bloa, M., Royal, A., Jaggard, K.W. and Pidgeon, J.D. 2004.Assessing the genetic resources to improve drought tolerance in sugar beet: agronomic traits of diverse genotypes under droughted and irrigated conditions. Field Crop Research. 90: 213-234.
Ober, E.S., Le Bloa, M., Clark, C.J.A., Royal, A., Jaggard, K.W. and Pidgeon, J.D. 2005.Evaluation of physiological traits as indirect selection criteria for drought tolerance in sugar beet.Field Crops Research. 91: 231–249.
Okasha, S.A. and Mubarak, M.H. 2018.Evaluation of Some Sugar Beet Genotypes under Drought Stress Based on Selection Indices.Journal of Agronomy Research. 1: 34-47. Doi: 10.14302/issn.2639-3166.jar-18-2083
Parkash, V. and Singh, S.A. 2020.Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops.www.mdpi.com/journal/sustainability, doi: 10.3390/su12103945
Pidgeon, J.D., Ober, E.S., Qi, A., Clark, C.J.A., Royal, A. and Jaggard, K.W. 2006.Using multi environment sugar beet variety trials to screen for drought tolerance. Field Crops Research. 95: 268-279.
Pidgeon, J.D., Werker, A.R., Jaggard, K.W., Richter, G.M., Lister, D.H. and Jones, P.D. 2001. Climatic impact on the productivity of sugar beet in Europe 1961–1995. Agricultural and Forest Meteorology. 109: 27–37.
Putnik-Delic, M., Maksimovic, I., Nagl, N. and Lalic, B. 2018. Sugar Beet Tolerance to Drought: Physiological and Molecular Aspects. In. Plant, Abiotic Stress and Responses to Climate Change. doi:10.5772/intechopen.72253, 69-88
Rizza, F., Badeck, F.W., Cattivelli, L., Li Destri, O., Di Fonzo, N. and Stanca, A.M. 2004. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science. 44: 2127–2137.
Salter. O.J. and Goode, J.E. 1976. Crop Response to Water Different Stages of Growth.Research Review, No: 2. Common wealth Agricultural Bureau, Farnham Royal. pp. 246
Siahpoosh.M.R. Dehghanian, E. and Kamgar, A. 2011.Drought tolerance evaluation of bread wheat genotypes using water use efficiency, evapotranspiration efficiency, and drought susceptibility index.Crop Science. 51: 1198-1204.
Tarkalson, D.D., Eujayl, I., Beyer, W. and King B.A. 2014. Drought Tolerance Selection of Sugar beet Hybrids.Journal of Sugar Beet Research. 51 (1and 2): 14-30.
Ucan, K. and Gencoglan, C. 2004. The effect of water deficit on yield and yield components of sugar beet. Turkish Journal of Agriculture and Forestry. 163-172.
Vahidi, H., Rajabi, A., Haj, M.R., Hadi, S., FathollahTaleghani, D. and Azadi, A. 2013.Screening of sugar beet genotypes for drought tolerance. The International Journal of Agriculture and Crop Sciences. 6(16): 1104-1113.
Wakchaure, G., Minhas, P., Meena, K.K., Singh, N.P., Hegade, P.M. and Sorty, A.M. 2018. Growth, bulb yield, water productivity and quality of onion (Allium cepa L.) as affected by deficit irrigation regimes and exogenous application of plant bio–regulators. Agricultural Water Management. 199: 1–10.
Zhu, J.K. 2002. Salt and drought stress signal transduction in plants, The Annual Review of Plant Biology. 53: 247–273