مقایسه‌ کارایی هیدرولیکی سرریز های کنگره ای با فرم تاج ربع دایره ای و نیم دایره ای با استفاده از روش های فرامدلی QNET, SVM, GEP, ANN))

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشکده فنی و مهندسی-دانشگاه مراغه

2 دانشجوی کارشناسی ارشد، مهندسی عمران -آب و سازه‌های هیدرولیکی-دانشگاه مراغه،

3 گروه عمران. واحد ملکان. دانشگاه آزاد اسلامی. ملکان. ایران

چکیده

سرریزهای غیرخطی ضمن برخوردار بودن از مزیت‌های اقتصادی، قابلیت عبوردهی جریان بیشتری را نسبت به سرریزهای خطی دارند. الگوریتم‌های هوشمند به دلیل توانایی زیاد در کشف رابطه‌های دقیق پیچیده‌ی مخفی بین پارامترهای مستقل موثر و پارامتر وابسته و همچنین صرفه‌جویی مالی و زمانی، جایگاه بسیار ارزشمندی بین پژوهشگران پیدا کرده‌اند. در این پژوهش عملکرد الگوریتم‌های پشتیبان بردار ماشین(SVM) ، برنامه‌ریزی بیان ژن(GEP) ، نرم‌افزار (QNET) و شبکه هوش مصنوعی (ANN) در پیش‌بینی ضریب دبی سرریزهای غیرخطی تعداد 318 سری داده برای سناریو اول و سناریو دوم شامل تعداد 363 سری داده و سناریو سوم شامل ادغام داده‌ها (مجموع سناریو‌ی اول و دوم) که شامل 681 سری داده می‌باشند. تفاوت سناریو اول و دوم در فرم تاج سرریز ربع‌دایره‌ای و نیم‌دایره‌ای می-باشد. پارامترهای هندسی و هیدرولیکی مورد استفاده در این پژوهش شامل نسبت بار آبی کل(H_T/p) ، بزرگ نمایی (L_C/W)، زاویه دیواره سیکل(α) و ضریب دبی (Cd) می‌باشند. نتایج هوش مصنوعی نشان داد که تر کیب پارامترهای(Cd, H_T/p, α, L_C/W) در الگوریتم‌هایQNET ، ANN،GEP و SVM در مرحله‌ی آموزش مربوط به سناریو برتر با شاخصه‌های ارزیابی به‌ترتیب برابراست با (9960/0=(R2، (0080/0=(RMSE، (9961/0=(DC، (9980/0=(R2، (0057/0=(RMSE، (9980/0=(DC، (9837/0=(R2، (0207/0=(RMSE، (9838/0=(DC و (9902/0=(R2، (0186/0=(RMSE، (9830/0=(DC می‌باشد. که در مقایسه با دیگر ترکیب‌ها منجر به بهینه‌ترین خروجی شده است که نشان دهنده دقت بسیار مطلوب به‌ترتیب در هر چهار روش عبارت است از ANN، QNET، SVM و GEP در پیش‌بینی ضریب دبی سرریز غیرخطی است. نتایج آنالیز حساسیت نشان داد که پارامتر موثر در تعیین ضریب دبی سرریز غیرخطی در تمامی روش‌ها پارامتر نسبت بار آبی کل (H_T/p) می‌باشد. مقایسه نتایج این تحقیق با سایر محققین نشان می‌دهد که شاخصه‌های ارزیابی برای تمامی روش‌های تحقیق حاضر نسبت به سایر محققین نسبتا بهتر می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of The Hydraulic Efficiency of labyrinth Weirs with a Quarter and Semi-Circular Crest Shape Using Neural Networks (QNET, SVM, GEP, ANN)

نویسندگان [English]

  • Mahdi Majedi Asl 1
  • tohid omidpour alavian 2
  • Mehdi Kouhdaragh 3
1 Associate Professor
2 M.SC., University of Maragheh
3 Civil Engineering Department, Engineering Faculty, Malekan Branch, Islamic Azad University, Malekan, Iran
چکیده [English]

While having economic advantages, non-linear weirs have more passing flow capacity than linear weirs. These weirs have higher discharge efficiency with less free height upstream compared to linear weirs by increasing the length of the crown at a certain width. Intelligent algorithms have found a valuable place among researchers due to their great ability to discover complex and hidden relationships between effective independent parameters and dependent parameters, as well as saving money and time. In this research, the performance of support vector machine (SVM), gene expression programming (GEP), software (QNET) and artificial intelligence network (ANN) in predicting the discharge coefficient of non-linear Weirs of 318 data series for the first scenario And the second scenario includes the number of 363 data series and the third scenario includes data integration (the sum of the first and second scenario) which includes 681 data series. The difference between the first and second scenarios is in the shape of the quarter-circle and semi-circle weir crown. The geome tric and hydraulic lines used in this research include total water load ratio (H_T/p), magnification) L_C/W), cycle wall angle (α) and discharge coefficient (Cd). The results of artificial intelligence showed that the combinations (Cd, H_T/p, α, L_C/W) in QNET, ANN, GEP, SVM algorithms in the training stage related to the superior scenario are equal to the evaluation indicators respectively (R2=0.9960), (RMSE=0.0080), (DC=0.9961), (R2=0.9980), (RMSE=0.0057), (DC=0.9980), (R2=0.9837), (RMSE=0.0207), (DC=0.9838) and (R2=0.9902), (RMSE=0.0186), (DC=0.9830). Which has led to the most optimal output compared to other combinations, which indicates a very favorable accuracy in all four methods, namely ANN, QNET, SVM and GEP in predicting the weir discharge coefficient is non-linear. The results of the sensitivity analysis showed that the effective parameter in determining the nonlinear weir discharge coefficient in all methods is the total water load ratio parameter (H_T/p).

کلیدواژه‌ها [English]

  • Sensitivity Analysis
  • Non-Linear Weirs
  • Neural Networks
  • Discharge Coefficient
Abbaspour, A. and Arvanaghi, H. 2011. Forecasting the flow on the triangular-rectangular compound overflow using planning. The 10th Iran Hydraulic Conference.
Azamathulla, H. Md., Ghani, A.A., Nor Azazi, Z. and Aytac G. 2010. Genetic Programming to Predict Bridge Pier Scour, Journal OF Hydraulic Engineering, Technical Note, ASCE. DOI: 10.1061/ (ASCE) HY.1943-7900.0000133, 136(3).
Azarpeyvand, H., A R. Emadi and M. Sedghi ASL. 2019. An Experimental Study of the Discharge of the Length Increase Effect on the Composite Trapezoidal Labyrinth Spillway. Journal of Water and Soil Science. 23 (1):405-418.
Bahrebar A R., Heidarnejad, M., Masjedi, A R., and Bordbar, A. 2021. Numerical and experimental study of the combination of labyrinth weir with orifice and its effect on discharge coefficient. Journal of Water and Soil Science 25 (2):91-105.
Crookston, B.M. 2010. Labyrinth Weirs. All Graduate Theses and Dissertations. Utah State University.
Crookstone, B.M. and Tullis, B.P. 2012. Discharge Efficiency of Reservoir-Application-Specific Labyrinth Weirs. J. Irrig. Drain. Eng., 138:564-568.
Crookstone, B.M. and Tullis, B.P. (2013). Hydraulic Design and Analysis of Labyrinth Weirs. I: Discharge Relationships. J. Irrig. Drain. Eng., 139:363-370.
Cimen, M. (2008). Estimation of Daily suspended sediments using Support Vector Machine, Hydrological sciences Jurnal: 53 (3), 656-666.
Carollo, F.G., Ferro, V. and Pampalone, V. (2012). Experimental Investigation of the Outflow Process over a Triangular Labyrinth-Weir. J. Irrig. Drian Eng., 10.106/ (ASCE) IR. 1943-4774.0000366, 138:73-79.
Christensen, N.A., B.P. Tullis. (2012). Arced Labyrinth Weir Flow Characteristics. 4th International Junior Reasercher and Enginner Workshap on Hydraulic Structures. IJREWHS’ 12. B. Tullis and R. Janssen (Eds.) Utah State University, Logan, USA.
Cassidy, J.J., Christopher, F., Gardner, A., Robert, T. and Peacock, M. (1985). Boardman Labyrinth-Crest Spillway. J. Hydraul. Eng. 1985.111: 398-416.
Darvas, L.A., (1971). Performance and Design of Labyrinth Weir. J. Hydr. Engg. ASCE. 97(8):1246-1251.
Dabling, M.R. (2014). Nonlinear weir hydraulics. M.Sc. Thesis. Utah State University, Logan, UT.
Dorado, J., Rabuñal, J. R., Pazos, A., Rivero, D., Santos, A. and Puertas, J. (2003). Prediction and modeling of the rainfall-runoff transformation of a typical urban basin using ANN and GP. Applied Artificial Intelligence, 17(4), 329-343.
Fouladipanah, M., Majedi-Asl, M .and Haghgooyi, A. (2020). Application of Intelligent Algorithm to Model Head-Discharge Relationship for Submerged Labyrinth and Linear Weirs. Hydraulic Journal, No. 15, Volume 2, pp. 149-164.
Ferreira, C. (1999): “Gene Expression Programming: A New Adaptive Algorithm for Solving Problems”, Complex Systems, 13:2, 87-129.
Gentilini, B., (1949). Stramazzi con cresta a pianta obliqua e a zig-zag. Memorie e Studi dell instituto di Idraulica e Construzioni Idrauliche Del Regil Politecnico di Milano, 48, in Italian.
Goyal, M.K. and Ojha, C.S.P. 2011. Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree. Water Resour. Manage. 25, 2177–2195.
Hay, S. and Taylor, G. (1970). Performance of Labyrinth Weirs. ASCE J. of Hydraulic Engg. 96(11):2337-57.
Indlekofer, H. and Rouve, G. (1975). Discharge over Polygonal Weirs. J. Hydr. Div., 101(3), 385-401.
Kumar, M., Sihag, P., Tiwari, N.K. and Ranjan, S. (2020). Experimental study and modelling discharge coefficient of trapezoidal and rectangular piano key weirs. Applied Water Science, 10, 43-52.
Kabiri-Samani, A.R., Ansari, A. and Borghei, S.M. (2010). Hydraulic behaviour of flow over an oblique weir. J. Hydraulic Research. 48(5), 669-673.
Kisi, O., Shiri, J., Karimi, S., Shamshirband, S., Motamedi, S., Petković, D. and Hashim, R. (2015). A survey ofwater level fluctuation predicting in Urmia Lake using support vector machine with firefly algorithm. Applied Mathematics and Computation, 270, 731-743.
Lux, F. (1989). Design and Application of Labyrinth Weirs. Design of Hydraulic Structures 89, Edited by Alberson, ML, Kia RA, Balkema/Rotterdam/Brookfield, 1989.
Lux, F., and Hinchliff, D.L. (1985). “Design and Construction of Labyrinth Spillways.” 15th Congress ICOLD, Vol. IV, Q59-R15, Switzerland, 249-274.
Mehri, Y., Esmaeili, S., Soltani, J., Saneie, S. and Rostami, M. (2018). Evaluation of SVM and nonlinear regression models for predicting the discharge coefficient of side piano key weirs in irrigation and drainage networks. Iranian Journal of Irrigation aاندnd Drainage, 12(70): 994-1003(in Persian).
Majedi-Asl, M. and Fuladi-Panah, M. 2017. The use of evolutionary systems in determining the discharge coefficient of triangular concourse overflows. Journal of Water and Soil Sciences. Journal of Agricultural Sciences and Techniques and Natural Resources, 1.14: 279-290.
Majedi-Asl, M. and Fuladipanah, M. (2018). Application of the Evolutionary Methods in Determining the Discharge Coefficient of Triangular Labyrinth Weirs. Journal of Water and Soil Science (Science and Technology of Agriculture and Natural Resources), 22(4), 279-290 (In Farsi).
Majedi-Asl, M. and Valizadeh, S. (2018). Application of SVM Algorithm in Predicting Vertical Pier Scour Depth. 23 (4 :) 181-165.
Meshkavati toroujeni, J., A. dehghani, A. Emadi, M. Masoudian. (2021). Experimental Study of Discharge Coefficient at the Dentate Trapezoidal Labyrinth Weir. Journal of Water and Soil Science 25 (3): 209-224.
Monjezi, R., M. Heidarnejad, A R. Masjedi, M H. Pourmohammadi and A. Kamanbedast. 2019. An Experimental Investigation into the Effect of Curve Radius on the Discharge Coefficient in Curved-Linear and Curved-Labyrinth Weirs with a Triangular Plan. Journal of Water and Soil Science 23 (2): 87-101.
Majedi-Asl, M., Daneshfaraz, R., Fuladipanah, M., Abraham, J. and Bagherzadeh, M. (2020). Simulation of bridge pierscour depth base on geometric characteristics and field data using support vector machine algorithm. Journal of Applied Research in Water and Wastewater, 7(2), 137-143. Doi: 10.22126/arww.2021.5747.1189
Majedi-Asl, M., Foladipanah, M., Arun, V. and Tripathi, R. P. (2021). Using data mining methods to improve discharge coefficient prediction in Piano Key and Labyrinth weirs. Water Supply.
 Masoudi, M. H., Sadeghian, J. (2021). Study of the Labyrinth Rectangular Weirs Efficiency with Equal and Unequal Congresses in Plan. Journal of Hydraulics, Volume 16, P. 109-122. Doi: 10.30482/JHYD.2021.295438.1541.
Norouzi, R., R. Daneshfaraz and A. Ghaderi. 2019. Investigation of discharge coefficient of trapezoidal labyrinth weirs using artificial neural networks and support vector machines. Applied Water Science, 9: 148-158.
Omidpour Alavian, T., Majedi-Asl, M, Soltani, M. and Shamsi, V. 2022a. Comparison of the hydraulic efficiency of Labyrinth Weirs with quarter-circle and semi-circular crown shapes using met model methods (QNET), 8th.International Congress on Civil Engineering, Architecture and Urban Development / 07-09 March. 2023, Tehran, Iran.
Omidpour Alavian, T., Majedi-Asl, M, Soltani, M, Mohammadi, E. and Shamsi, V. 2022b. Comparison of the hydraulic efficiency of Labyrinth Weirs with quarter-circle and semi-circular crown shape using met model method (ANN), 8th.International Congress on Civil Engineering, Architecture and Urban Development / 07-09 March. 2023, Tehran, Iran.
Omidpour Alavian, T., and Majedi-Asl, M, Sohrabi, F, Shamsi, V. and Ayami, M. 2022c. Modeling and evaluation of the discharge coefficient of an arched Labyrinth with the Qnet met model method, the first modern national conference in civil and environmental engineering. Ramsar, Iran.
Parsaie, A., Haghiabi, A.H. and Shamsi Z. 2019. Intelligent mathematical modeling of discharge coefficient of nonlinear weirs with triangular plan. AUT Journal of Civil Engineering. 3(2): 149-156.
Roushangar, K., Alami M. T., Shiri J. and Majedi-Asl, M. 201). Determining discharge coefficient of labyrinth and arced labyrinth weirs using support vector machine. Hydrology Research. 49(3): 924-938.
Seo, I.W., Do, K.Y., Park, Y.S. and Song, C.G. 2016. Spillway discharges by modification of weir shapes and overflow surroundings. Environmental Earth Science. 75(6):496-509.
Sivapragasam, C., Liong, S. Y. and Pasha, M. F. K. 2001. Rainfall and runoff forecasting with SSA–SVM approach. Journal of Hydroinformatics. 3(3). 141-152.
Sohrabi, F., Majedi-Asl, M, Omidpour Alavian, T. and Shamsi, V. 2022a. Investigation of the effect of the prediction angle of the discharge coefficient in arched Labyrinth Weirs using vector machine tool (SVM), the first national conference of modern exhibitions. In civil and environmental engineering, Ramsar, Iran.
Sohrabi, F., Majedi-Asl, M, Omidpour Alavian, T. and Shamsi, V. 2022b. Investigating the effect of angle in predicting the discharge coefficient in arched Labyrinth Weirs using the GEP gene expression programming algorithm, the first national conference on modern approaches in civil engineering and environment, Ramsar, Iran.
Taylor G. 1968. The performance of Labyrinth weir, thesis presented to university of Nottingham, England.
Tullis, B.P., Willmore, C.M., Wolfhope, J.S., (2005). Improving Performance of Low-Head Labyrinth Weirs. In Impacts of Global Climate Change. 1-9.
Tison, G. and Fransen, T. 1963. Essais sur Deversoirs de forme Polygonal en Plan. Revue C. Brussels, Belgium. 3: 38-51.
Tacail, F.G., Even, B. and Babb, A. 1990. Case Study of a Labyrinth Spillway. Canadian Journal of Civil Engineering, 17, 1-7.
Tullis, B.P., Amanian, N. and Waldron, N. 1995. Approach to Improve the Discharging Capacity of Design of Labyrinth Spillways. ASCE J. of Hyraulic Sharp-Crested Triangular Plan form Weirs. Journal of Fluids Engineering. 121 (3):247-55.
V.N. Vapnik, The nature of statistical learning theory, Springer, New York, 1995.
Wormleaton, P.R. and Soufiani, E. 1998. Aeration of Included Angle and Sill Slope on Air Entrainment of Triangular Planform Labyrinth Weirs. Journal of hydraulic engineering. 131(3): 184-189.
Wormleaton, P. R. and Tsang, C. C. 2000. Aeration performance of rectangular planform labyrinth weirs. Journal of environmental engineering. 126(5): 456-465.
Zerihun, Y.T. and Fenton, J.D. 2007. A Boussinesq-type model for flow over trapezoidal profile weirs. Journal of Hydraulic Research. 45(4): 519-528.