ارزیابی تاثیر بیوچار و هیدروچار اصلاح شده بر کاهش آبشویی نیترات در خاک لوم در شرایط غیر اشباع

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

2 دانشیار آبیاری و زهکشی دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز ، ایران

3 استاد گروه آبیاری وزهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.

4 استاد آبیاری و زهکشی، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز

چکیده

استفاده از جاذب‌های ارزان قیمت همچون هیدروچار و بیوچار، جهت حفظ محیط زیست (جلوگیری از آلودگی آب‌ها توسط نیترات) از اهمیت زیادی برخوردار است. بدین منظور این تحقیق در سال 1397 در مزرعه تحقیقاتی شماره یک دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز انجام شد. تیمارهای این تحقیق، هیدروچار و بیوچار اصلاح شده در سه سطح صفر (شاهد)، 2 و 5 گرم در کیلو گرم خاک در 4 تکرار بود. پس از تهیه هیدروچار و بیوچار باگاس نیشکر و مخلوط کردن این مواد با خاک لوم و ریختن آن‌ها در لوله‌های آزمایش، کود اوره به صورت سرک و از بین 15 آبیاری، در آبیاری‌های 1، 6 و 12 به ستون‌های خاک اعمال گردید. این آزمایش در قالب طرح آماری بلوک‌های کامل تصادفی و به‌صورت دو آزمایش مستقل انجام شد. در پایان هر آبیاری نیترات خروجی اندازه‌گیری شد. نتایج نشان داد که اثر تیمار 5 گرم بیوچار در تمام آبیاری‌ها و تیمار 5 گرم هیدروچار غیر از آبیاری 4 و 6 در سطح 5 درصد بر کاهش آبشویی نیترات معنی‌دار بود. تیمار 2 گرم بیوچار در تمامی آزمایش‌ها نسبت به تیمار 2 گرم هیدروچار عملکرد بهتری را از خود نشان داد. تیمار 2 و 5 گرم بیوچار در کیلو گرم خاک به ترتیب 30 و 43 درصد و تیمار 2 و 5 گرم هیدروچار در کیلو گرم خاک به ترتیب 20 و 31 درصد نسبت به تیمار شاهد در جلوگیری از آبشویی نیترات موثر بودند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of modified biochar and hydrochar on reducing nitrate leaching in loam soil under unsaturated conditions

نویسندگان [English]

  • yazdan khodarahmi 1
  • Amir Soltani mohamadi 2
  • Saeid Boroomand Nasab 3
  • Abdali Naseri 4
1 1. MSc. Student of irrigation and Drainage, faculty of Water Sciences Engineering, Shahid Chamran Univrsity of Ahvaz, Ahvaz, Iran
2 Department of irrigation and Drainage, faculty of Water Sciences Engineering, Shahid Chamran Univrsity of Ahvaz, Ahvaz, Iran
3 Professor, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran
4 Professor of Irrigation and Drainage, Faculty of Water Engineering, Shahid Chamran University of Ahvaz
چکیده [English]

Using cheap adsorbents, such as hydrochar and biochar, is important for protecting the environment (preventing water pollution by nitrates). For this purpose, this research was carried out in 2018 at research farm Faculty of Water Sciencs Engineering, Shahid Chamran University of Ahvaz. The treatments of this research were hydrochloric and biochemical modified in three levels of 0 (control), 2 and 5 g / kg soil in 4 replicates. After preparing hydrochar, biochar and bagasse sugarcane and mixing these materials with loamy soil and pouring them into test tubes, urea fertilizer was applied from 15 irrigation, in irrigation 1, 6 and 12 to soil columns. This experiment was conducted in a randomized complete block design with two independent experiments. At the end of each irrigation, nitrate output was measured. The results showed that the effect of 5 grams of irrigation treatments on all irrigation and 5 grams of water treatment, except irrigation 4 and 6 at 5% level, was significant on nitrate leaching. 2 g of biochar treatment showed better performance than 2 g of Hydrochar in all experiments. Treatment of 2 and 5 g / kg of soil in 30 and 43% respectively, and treatment of 2 and 5 g of hydrochar per kg of soil, , were 20 and 31%, respectively, was effective in preventing nitrate leaching.

کلیدواژه‌ها [English]

  • Modified biochar
  • Modified hydrochar
  • Nitrate leaching
  • Urea fertilizer
دیوبند هفشجانی، ل.، 1395. بررسی تاثیر کاربرد ورمی کمپوست و بیوچار باگاس نیشکر بر جلوگیری از آبشویی نیترات در خاک. پایان‌نامه دکتری دانشگاه شهید چمران اهواز.
عابدی کوپایی، ج.، موسوی، ف.، 1389. بررسی تاثیر کاربرد زئولیت کلینذوپتیلولایت در کاهش آبشویی کود اوره از خاک. آب و فاضلاب، (2): 57-51.
قشقایی، ز. 1392. تأثیر عنصر روی بر اینفلاکس- ایفلاکس نیترات و انباشت آن در کاهو و اسفناج در شرایط کشت هیدروپونیک. پایان‌نامه کارشناسی ارشد. دانشگاه فردوسی مشهد.
کاشی‌ساز، م. 1392. شبیه‌سازی حرکت شکل‌های مختلف نیتروژن، تحت تأثیر سه نوع تناوب زراعی با استفاده از نرم افزار HYDRUS- ID. پایان‌نامه کارشناسی ارشد. دانشگاه شهید چمران اهواز.
 محراب، ن. و ح. گنجی‌دوست. 1393. پیامد کاربرد زئولیت غنی شده با آمونیوم بر نگهداشت نیترات و آمونیوم در دو خاک با بافت متفاوت در مدیریت کشت گندم. نشریه مدیریت خاک، 3 (1): 30-21.  
محمدیان، م.، ملکوتی، م ج. 1381. ارزیابی تأثیر دو نوع کمپوست بر خصوصیات فیزیکی و شیمیایی خاک و عملکرد ذرت. 16(2): 151-144.
Behatnagar, A., Silanpaa, M. 2011. A review of emerging adsobemt for nitrate removal from water. Chemical Engineering Journal. 168, 493-504.
Bhatnagar, A., Kumar, E. and M. Sillanpaa. 2010. Nitrate removal from watrer by nano-alumina: Charactrization and sorption studies. Chmical Engineering Journal, 163(3): 317-323.
Chen X, Chen, G L, Chen Y, Lehmann J, McBride M B, and A G. 2011. Adsorption of cipper and by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology Technology 102: 8877-8884.
Chan, K.Y., Zwieten, L.V., Meszaros, I., Downie, A., Joseph, S., 2008. Using poultry litter biochars as soil amendments. Aust. J. Soil Res. 46, 437-444.
Chun Y, Sheng G, Chiou CT, and Xing B, 2004. Comopositions and sorptive propertis of crop residue- derived chars. Environmental Scince and Technology 38: 4649-4655.
Dempster, D.N., Gleeson, D.B., Solaiman, Z.M., Jones, D.L., Murphy, D.V., 2012. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil. Plant Soil 354, 311–324.
Guerena, D., Lehmann, J., Hanley, K., Enders, A., Hyland, C., Riha, S., 2013. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 365, 239–254.
Fang, J. Gao, B. Chen, J. Zimmerman, A. R. 2015. Hydrochars derived from plant biomass under various conditions: Characterization and potential applications and impacts. Chemical Engineering Journal 267: 253–259.
Gajic, A., Koch, H. J. (2012): Sugar beet (Beta vulgaris L.) growth reduction caused by hydrochar is related to nitrogen supply. J. Environ. Qual. 41, 1067–1075.
Guiotoku, M, Rambo, CR, Hansel, FA, Magalhaes, WLE, Hotza, D. 2009. Microwave-assisted Hydrothermal Carbonization of Lignocellulosic Materials. Mater Lett, 63: 2707-2709.
Heilmann, SM, Davis, HT, Jader, LR. Lefebvre, PA, Sadowsky, MJ, Schendel, fj, et al. 2010. Hydrothermal Cabonizathion of Microalgae. Biomass Bioenerg, 34: 875-882.
Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I. and X. Xu. 2009. Black carbon decomposition and incorporation into soil microbial bicrobial biomas estimated by 14 C labeling. Soil Biology and Biochemistry, 41 (2): 210-219.
Kameyama, K., Miyamoto, T. Shiono, T. and Y. Shinogi. 2012. Influence of sugarcance bagasse-drrived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality, 41: 1131-1137.
Lehmann J: 2007. A handful of carbon Nature 447: 143-144.
Kanthle, A., Kumar Lenka, N., Sangeeta Lenka, S., Tedia, K. 2016. Biochar impact on nitrate leaching as influenced by native soil organic carbon in an Inceptisol of central India. Soil and Tillage Research, 157: 65-72.
Laird, D., Fleming, P., Wang, B., Horton, R., Laird, Z. and D. Karlen. 2010. Biochar impact on nutrient leaching from a Midwesten agricultural soil. Geoderma, 158: 436-442.
Lee LY, Tan L, Wu W, Yeo SK, Ong SL, 2013. Nitrogen removal in saturated zone with vermicompost as organic carbon source. Sustainable Environment Research; 23(2): 85-92.
Lehmann J, Gaunt J, and Rondon M, 2006. Biochar sequestration in terrestrial ecosysteme-a review. Mitigation and adaptation strategies for global 11: 395-419.
Masto, R. E., Kumar, S. Rout, T. Sarkar, P. George, J. and L. Ram. 2013. Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena, 111: 64-71.
Mukherjee, A. and A. R. Zimmerman. 2013. Organic carbon and nutrient release from a range of laboratory-produced biochars. Geoderma, 193-194: 122-130.
Mukherjee, A., Zimmerman, A.R., Harris, W.G., 2011. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 163, 247–255.
Mukherjee, A., Lal, R., Zimmerman, A.R., 2014. Impacts of biochar and other amendments on soil–carbon and nitrogen stability: a laboratory column study. Soil Sci. Soc. Am. J. doi:http://dx.doi.org/10.2136/sssaj2014.01.0025.
Sevilla, M, Fuertes, AB. 2009. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides. Chem-Eur J, 15: 4195-4203.
Sohi, S., Lopez-Capel, E., Krull. E and R. Bol. 2009. Biochar, climate change and soil: A review to guide future research: CSIRO Glen Osmond, Australia.
Sika, M.P., Hardie, A.G., 2014. Effect of pinewood biochar on ammonium nitrate leaching and availability in a South African sandy soil. Eur. J. Soil Sci. 65,113–119.
Ventura, M., Sorrenti, G., Panzacchi, P., George, E., Tonon, G., 2012. Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. J. Environ. Qual. 42, 76–82.
Xu, G, Lv, Y, Sun, J, Shao, H, Wei, L. 2012. Recent Advances in Biochar Applications in Agricultural Soils: Benefits and Environmental Implications. Clean-Soil Air Water, 40: 1093-1098.
Yu X, Panl, G, and Kookana RS, 2010. Enhanced and irreversible sorption of pesticide pyimethanil by soil amendel with biochars. Journal of Environmental Sciences 22: 615-620.
Yuan GH, Xu R.K, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology; 102: 3488–3497.
Yao, Y., Gao, B., Zhang, M., Inyang, M. and A. R. Zimmerman. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89: 1467-1471.
Zhang, L. and X. Sun. 2014. Changes in physical, chemical, and microbiological properties during the tow-stage co-composting of green waste with spent mushroom compost and biochar. Bioresource Technology, 171: 274-284